微分方程式⑩-2【定数係数でない微分方程式】(高専数学、数検1級) - 質問解決D.B.(データベース)

微分方程式⑩-2【定数係数でない微分方程式】(高専数学、数検1級)

問題文全文(内容文):
これを解け.

(3)$t^2\dfrac{d^2x}{dt^2}-3t\dfrac{dx}{dt}+4x=0$
(4)$t^2\dfrac{d^2x}{dt^2}+3t\dfrac{dx}{dt}+x=0$
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(3)$t^2\dfrac{d^2x}{dt^2}-3t\dfrac{dx}{dt}+4x=0$
(4)$t^2\dfrac{d^2x}{dt^2}+3t\dfrac{dx}{dt}+x=0$
投稿日:2021.01.15

<関連動画>

#27 数検1級1次 過去問 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y:$正の整数
$x+y=316$
$x:13$の倍数
$y:11$の倍数
をみたす組$(x,y)$をすべて求めよ。
この動画を見る 

#20 数検1級1次過去問 3重積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$
$\iiint_D x^3y^2z \ dx \ dy \ dz$
$D:0\leq x\leq y\leq z\leq 1$
を求めよ.
この動画を見る 

微分方程式⑦-3【2階微分方程式の一般解を求める】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\dfrac{d^2x}{dt^2}-\dfrac{dx}{dt}-2x=e^{-2t}$
(2)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}+2x=e^{-2t}$
(3)$\dfrac{d^2x}{dt^2}+4\dfrac{dx}{dt}+4x=e^{-2t}$

(1)~(3)の2階微分方程式の一般解を求めよ.
この動画を見る 

#17数検1級1次 過去問 微分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#微分法#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$

$0\lt \theta\lt \dfrac{\pi}{2}$,
$x=\sin\theta$
$y=-\log\left(\tan\dfrac{\theta}{2}\right)-\cos\theta$とする.
$\dfrac{d^2y}{dx^2}$を$\theta$で表せ.
この動画を見る 

重積分⑦-2【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#積分とその応用#2次曲線#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学検定#数学検定1級#数学(高校生)#数C#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$x^2+y^2+z^2=4a^2$ , $z \geqq 0$
$(x-a)^2+y^2=a^2$ , $z \geqq 0$
xy平面 (a>0)で囲まれた体積Vを求めよ。
この動画を見る 
PAGE TOP