国語・数学記述式を共通テストに導入する危険性【専門家達の意見】 - 質問解決D.B.(データベース)

国語・数学記述式を共通テストに導入する危険性【専門家達の意見】

問題文全文(内容文):
共通テストの国語、数学に記述式解答を導入した場合の危険性について語ります。
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#国語(高校生)#大学入試過去問(国語)#共通テスト(現代文)#共通テスト(古文)#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
共通テストの国語、数学に記述式解答を導入した場合の危険性について語ります。
投稿日:2019.12.03

<関連動画>

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通対策「数学で9割超える勉強法」についてお話しています。
この動画を見る 

【共通テスト】数学2B2024年レビュー(総評、傾向解説)

単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
勉強法
この動画を見る 

【高校数学】共通テスト(プレテスト)大問1の[1]~ちゃっちゃと解説~【数学ⅠA】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通テスト(プレテスト)の解説動画です
この動画を見る 

【満点続出】篠原塾の塾生の結果報告【共通テスト2023】

アイキャッチ画像
単元: #センター試験・共通テスト関連#共通テスト#その他#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通テスト2023の塾生の結果を報告動画です
この動画を見る 

2024年共通テスト解答速報〜数学ⅠA第3問〜福田の入試問題解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2024共通テスト数学ⅠA第3問解説です

箱の中にカ ー ドが 2 枚以上入っており、それぞれのカ ードにはアルファベットが一文字だけ書かれている。この箱の中からカ ー ドを一枚取り出し、書かれているアルファベットを確認してからもとに戻すという試行をり返し行う。
(1)箱の中にA,Bのカードが 1 枚ずつ全部で 2 枚入っている場合を考える。以下では、2 以上の自然数nに対しn回の試行で A. Bがそろっているとは、n回の試行でA,Bのそれぞれが少なくとも1回は取り出されることを意味する。
(i)2回の試行でA,Bがそろっている確率は$\dfrac{ア}{イ}$である。
(ii)3回の試行でA,Bがそろっている確率を求める。
 例えば、3回の試行のうちAを1回、Bを2回取り出す取り出し方は3通りあり、それらを全て挙げると次のようになる。※表は動画内参照
このように考えることにより、3 回の試行で A. B がそろっている取り出し方はウ通りあることがわかる。よって、3 回の試行で A. B がそろっている確率は$\dfrac{ウ}{2^3}$である。
(iii) 4 回の試行で A. B がそろっている取り出し方はエオ通りある。 よって、4 回の試行でA,B がそろっている確率は$\dfrac{カ}{キ}$である。
(2)箱の中にA,B,Cのカ ー ドが一枚ずつ全で 3 枚入っている場合を考える。
以下では、3 以上の自然数nに対しn回目の試行で初めて A. B. C がそろうとn回の試行で A,B,Cのそれぞれが少なくとも1回は取り出されかつA,B.Cのうちいずれか1枚がn回目の試行で初めて取り出されることを意味する。
(i)3 回目の試行で初めて A. B, C がそろう取り出し方はク通りある。よって、3 回目の試行で初めて A. B, C がそろう確率は$\dfrac{ク}{3^3}$である。
(ii) 4 回目の試行で初めて A.B,C がそろう確率を求める。4 回目の試行で初めて A. B. C がそろう取り出し方は.(1)の(ii)を振り返ることにより、3×ウ通りあることがわかる。よって、4 回目の試行で初めて A. B, C がそろう確率は$\dfrac{ケ}{コ}$である。
(iii)5 回目の試行で初めて A. B. C がそろう取り出し方はサシ通りある。よってを 5 回目の試行で初めてA,B,Cがそろう確率は$\dfrac{サシ}{3^3}$である。
太郎さんと花子さんは. 6 回目の試行で初めて A. B, C, D がそろう確率について考えている。
太郎:例えば. 5 回目までにA,B,Cのそれぞれが少なくとも1回は取り出され.かっ 6 回目に初めてDが取り出される場合を考えたら計算できそうだね。
花子:それなら初めて A. B. C だけがそろうのが, 3 回目のとき. 4 回目のとき. 5 回目のときで分けて考えてみてはどうかな。
6 回の試行のうち 3 回目の試行で初めて A. B. C だけがそろう取り出し方がク通りであることに注意すると「 6 回の試行のうち 3 回目の試行で初めて A. B. C だけがそろい、かつ6 回目の試行で初めてDが取り出される取り出し方はスセ通りあることがわかる。同じように考えると6回の試行のうち 4 回目の試行で初めて A, B, C だけがそろい、かっ 6 回目の試行で初めてDが取り出される」取り出し方はソタ通りあることもわかる。以上のように考えることにより, 6 回目の試行で初めて A. B. C, D がそろう確率は$\dfrac{チツ}{テトナ}$であることがわかる。

2024共通テスト過去問
この動画を見る 
PAGE TOP