【高校数学】2023年度 第1回 高2K塾記述模試 全問解説 - 質問解決D.B.(データベース)

【高校数学】2023年度 第1回 高2K塾記述模試 全問解説

問題文全文(内容文):
第1問:小問集合
次の□にあてはまる数または式を求めよ.
(1)$(x^2+x)(x^2+x-3)$を展開すると、$\Box$となる.
(2)$2x^2-5xy-3y^2$を因数分解すると、$\Box$となる.
(3)$\alpha=3+\sqrt6、\beta=3-\sqrt6$について、$\alpha\beta$の値は$\Box$であり、$\Box$である.
(4)$\theta$は鋭角とする.$\tan\theta=\sqrt3$のとき、$\cos\theta=\Box$である.
(5)不等式$-x\lt 3x-4\lt x$の解は$\Box$である.
(6)次のデータがある。$6,3,5,2,2,7,1,4,8$ このデータの第3四分位数は$\Box$であり、四分位範囲は$\Box$である.

第2問[1]:図形と計量
三角形$ABC$があり、$AB=4,AC=5,\cos\angle BAC=\dfrac{1}{8}$である。
(1)$\sin\angle BAC$の値を求めよ。また、辺$BC$の長さを求めよ。
(2)辺$AC$(両端を除く)上に点$D$をとり、三角形$BCD$の外接円の半径を$R$とする。
(i)$\angle BDC=\theta$とおくとき、$\sin\theta$を$R$を用いて表せ.
(ii)$R=4$のとき、線分$BD$の長さと線分$AD$の長さを求めよ.

[2]:場合の数
1個のサイコロを4回振り、出た目の数を左から順に並べて4桁の整数Nを作る。例えば、1個のサイコロを4回振り、出た目の数が順に$1,2,3,4$である場合は$N=1234$となる。 
(1)$N$は全部で何個できるか.
(2)$2126,3335$のように、同じ数を含む$N$は何個できるか.
(3)$4321$より大きい$N$は何個できるか.

第3問:2次関数
$x$の2次関数$f(x)=x^2-2x+2$があり、放物線$y=f(x)$を$C_1$とする。
(1)(i)$C_1$の座標を求めよ。
(ii)$0\leqq x\leqq 4$における$f(x)$の最大値と最小値を求めよ。
(2)$p$を正の整数とする。$C_1$を$x$軸の方向に$p$、$y$軸方向に$-p$だけ平行移動した放物線を$C_2$とし、$C_2$の方程式を$y=g(x)$とする。
(i)$C_2$の頂点の座標を求めよ。
(ii)$0\leqq x\leqq 4$における$g(x)$の最小値を$m$とする。$m$を$p$を用いて表せ。
(iii)次の2つの条件(A),(B)がともに成り立つような$p$の値の範囲を求めよ。
  (A)$0\leqq x\leqq 4$を満たすすべての実数$x$に$g(x)\gt 0$
(B)$0\leqq x\leqq 4$を満たすある実数xに対して$g(x)\gt 8$

第4問:複素数と方程式
$a,b$を実数の定数とし、$c$を0でない実数の定数とする。2つの2次方程式
$x^2-6x+10=0$ …①
$x^2-ax+b=0$ …②
があり、②の2つの解は$1+ci、1-ci$である。ただし、$i$は虚数単位である。
(1)①を解け。
(2)$a$の値を求めよ。また、$b$を$c$を用いて表せ。
(3)$d$を実数の定数とする。多項式$P(x)$があり、$P(x)$を2次式$x^2-ax+b=0$で割ると、商は $x^2-6x+10=0$、余りは$cx+d$である。
 (i)$P(1+ci)$を$p+qi$ ($p,q$は実数であり、いずれも$c,d$で表された式)の形で表せ。
 (ii)①の2つの解を$\alpha,\beta$と表し、複素数の集合$A,B$を
 $A={\alpha,\beta,1+ci,1-ci}、B={P(\alpha),P(\beta),P(1+ci),P(1-ci)}$
 と定める。$A=B$となるような$b,c,d$の組($b.c,d$)をすべて求めよ。ただし、$A=B$とは、$A$の要素と$B$の要素がすべて一致することである。

第5問:確率
1が書かれた赤色、白色、青色のカードが1枚ずつ、2が書かれた赤色、白色、青色のカードが1枚ずつ、3が書かれた赤色、白色、青色のカードが1枚ずつ、4が書かれた赤色、白色、青色のカードが1枚ずつ、計12枚のカードが袋の中に入っている。この袋から無作為に3枚のカードを同時に取り出す。
(1)取り出した3枚のカードに書かれた数がすべて同じ数である確率を求めよ。
(2)取り出した3枚のカードに書かれた数がすべて異なる数である確率を求めよ。
(3)取り出した3枚のカードに書かれた数の和が3の倍数である確率を求めよ。
(4)取り出した3枚のカードに書かれた数の和が3の倍数であるとき、その3枚のカードの中に赤色のカードが含まれている条件付き確率を求めよ。
チャプター:

0:00 オープニング
0:05 大問1の問題文:小問集合
0:10 (1)解説:展開
1:05 (2)解説:因数分解
1:52 (3)解説:対称式の値
3:35 (4)解説:三角比の値
4:45 (5)解説:連立不等式
5:42 (6)解説:データの分析
7:40 第2-i問の問題文:図形と計量
7:46 (1)解説:sin、線分BCの長さ
9:33 (2-i)解説:正弦定理
10:49 (2-ii)解説:線分BD、ADの長さ
14:21 第2-ii問の問題文:場合の数
14:26 (1)解説:全通り
15:14 (2)解説:同じ数を含む、余事象
16:26 (3)解説:4321より大きいもの
18:02 第3問の問題文:2次関数
18:07 (1-i)解説:頂点座標
18:59 (1-ii)解説:最大最小
20:11 (2-i)解説:平行移動
21:15 (2-ii)解説:場合分けの最大最小
25:35 (2-iii)解説:条件を満たすとき
32:23 第4問の問題文:複素数と方程式
32:28 (1)解説:2次方程式を解け
33:23 (2)解説:解と係数の関係
34:54 (3-i)解説:多項式の割り算、因数定理
36:25 (3-ii)解説:集合の要素が同じになるとき
40:59 第5問の問題文:確率
41:04 (1)解説:すべて同じ数になるとき
43:00 (2)解説:すべて異なる数になるとき
44:17 (3)解説:和が3の倍数になるとき
46:12 (4)解説:和が3の倍数で赤色を含むとき
48:54 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問:小問集合
次の□にあてはまる数または式を求めよ.
(1)$(x^2+x)(x^2+x-3)$を展開すると、$\Box$となる.
(2)$2x^2-5xy-3y^2$を因数分解すると、$\Box$となる.
(3)$\alpha=3+\sqrt6、\beta=3-\sqrt6$について、$\alpha\beta$の値は$\Box$であり、$\Box$である.
(4)$\theta$は鋭角とする.$\tan\theta=\sqrt3$のとき、$\cos\theta=\Box$である.
(5)不等式$-x\lt 3x-4\lt x$の解は$\Box$である.
(6)次のデータがある。$6,3,5,2,2,7,1,4,8$ このデータの第3四分位数は$\Box$であり、四分位範囲は$\Box$である.

第2問[1]:図形と計量
三角形$ABC$があり、$AB=4,AC=5,\cos\angle BAC=\dfrac{1}{8}$である。
(1)$\sin\angle BAC$の値を求めよ。また、辺$BC$の長さを求めよ。
(2)辺$AC$(両端を除く)上に点$D$をとり、三角形$BCD$の外接円の半径を$R$とする。
(i)$\angle BDC=\theta$とおくとき、$\sin\theta$を$R$を用いて表せ.
(ii)$R=4$のとき、線分$BD$の長さと線分$AD$の長さを求めよ.

[2]:場合の数
1個のサイコロを4回振り、出た目の数を左から順に並べて4桁の整数Nを作る。例えば、1個のサイコロを4回振り、出た目の数が順に$1,2,3,4$である場合は$N=1234$となる。 
(1)$N$は全部で何個できるか.
(2)$2126,3335$のように、同じ数を含む$N$は何個できるか.
(3)$4321$より大きい$N$は何個できるか.

第3問:2次関数
$x$の2次関数$f(x)=x^2-2x+2$があり、放物線$y=f(x)$を$C_1$とする。
(1)(i)$C_1$の座標を求めよ。
(ii)$0\leqq x\leqq 4$における$f(x)$の最大値と最小値を求めよ。
(2)$p$を正の整数とする。$C_1$を$x$軸の方向に$p$、$y$軸方向に$-p$だけ平行移動した放物線を$C_2$とし、$C_2$の方程式を$y=g(x)$とする。
(i)$C_2$の頂点の座標を求めよ。
(ii)$0\leqq x\leqq 4$における$g(x)$の最小値を$m$とする。$m$を$p$を用いて表せ。
(iii)次の2つの条件(A),(B)がともに成り立つような$p$の値の範囲を求めよ。
  (A)$0\leqq x\leqq 4$を満たすすべての実数$x$に$g(x)\gt 0$
(B)$0\leqq x\leqq 4$を満たすある実数xに対して$g(x)\gt 8$

第4問:複素数と方程式
$a,b$を実数の定数とし、$c$を0でない実数の定数とする。2つの2次方程式
$x^2-6x+10=0$ …①
$x^2-ax+b=0$ …②
があり、②の2つの解は$1+ci、1-ci$である。ただし、$i$は虚数単位である。
(1)①を解け。
(2)$a$の値を求めよ。また、$b$を$c$を用いて表せ。
(3)$d$を実数の定数とする。多項式$P(x)$があり、$P(x)$を2次式$x^2-ax+b=0$で割ると、商は $x^2-6x+10=0$、余りは$cx+d$である。
 (i)$P(1+ci)$を$p+qi$ ($p,q$は実数であり、いずれも$c,d$で表された式)の形で表せ。
 (ii)①の2つの解を$\alpha,\beta$と表し、複素数の集合$A,B$を
 $A={\alpha,\beta,1+ci,1-ci}、B={P(\alpha),P(\beta),P(1+ci),P(1-ci)}$
 と定める。$A=B$となるような$b,c,d$の組($b.c,d$)をすべて求めよ。ただし、$A=B$とは、$A$の要素と$B$の要素がすべて一致することである。

第5問:確率
1が書かれた赤色、白色、青色のカードが1枚ずつ、2が書かれた赤色、白色、青色のカードが1枚ずつ、3が書かれた赤色、白色、青色のカードが1枚ずつ、4が書かれた赤色、白色、青色のカードが1枚ずつ、計12枚のカードが袋の中に入っている。この袋から無作為に3枚のカードを同時に取り出す。
(1)取り出した3枚のカードに書かれた数がすべて同じ数である確率を求めよ。
(2)取り出した3枚のカードに書かれた数がすべて異なる数である確率を求めよ。
(3)取り出した3枚のカードに書かれた数の和が3の倍数である確率を求めよ。
(4)取り出した3枚のカードに書かれた数の和が3の倍数であるとき、その3枚のカードの中に赤色のカードが含まれている条件付き確率を求めよ。
投稿日:2024.04.25

<関連動画>

【数A】場合の数:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
白玉6個、赤玉2個、青玉2個の計10個の玉を横一列に並べる。ただし、同じ色の玉は区別しない。
(1)並べ方は全部で何通りあるか。
(2)白赤白赤白と連続して並ぶ箇所があるような並べ方は何通りあるか。
(3)次の、赤玉についての条件A、青玉についての条件Bを考える。
A:「同じ色の玉が両隣にある」
B:「異なる色の玉が 両隣にある」
ただし、列の両端の玉は、AもBも満たさないものとする。例えば、 白赤白白白青赤青白白は、2個の赤玉はともにAを満たし、2個の青玉もともにBを 満たす。また、白赤赤白白青青白白白は、2個の青玉はともにBを満たすが、2個 の赤玉はともにAを満たさない。
(i)2個の赤玉がともにAを満たすような並べ方は 何通りあるか。
(ii)2個の赤玉がともにAを満たし、かつ、2個の青玉がともにBを満たすような並べ方は何通りあるか。
この動画を見る 

【数A】確率:2019年第2回高2K塾記述模試の第4問を解説!「難しそうだから手を付けませんでした...」と言っていた生徒と状況整理をしながら解いていくと「簡単でしたね!」となりました。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロを1回投げるごとに次の(規則)に従ってPを動かす。
(規則)
・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。
・3の目が出たときはx軸の正の方向に2だけ動かす。
・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。
例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy座標が2である条件付き確率を求めよ。
この動画を見る 

【数A】高2生必見!!2020年度 第2回 K塾高2模試 大問3_確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。
この動画を見る 

【数Ⅲ】極限:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#全統模試(河合塾)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
初項$2p^2$、公比pの等比数列{$a_n$}がある。ただし、pは実数の定数とする。無限 等比級数$\displaystyle \sum_{n=1}^{\infty}a_n$が収束し、その和が1であるとき、次の問に答えよ。
(1)p の値を求めよ。
(2)母線の長さが1、高さがa[n]の円錐の体積を$V_n$とする。無限 級数$\displaystyle \sum_{n=1}^{\infty}V_n$は収束するか。収束するときはその和を求め、発散するとき はそのことを示せ。
(3)母線の長さが1、高さが$a_n$の円錐の側面積を$T_n$とす る。無限級数$\displaystyle \sum_{n=1}^{\infty}T_n$は収束するか。収束するときはその和を求め、発散 するときはそのことを示せ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年8月 第2回 K塾高2模試 大問3_式と 証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
この動画を見る 
PAGE TOP