#50数検1級1次 過去問 重積分の積分順序の変更 - 質問解決D.B.(データベース)

#50数検1級1次 過去問 重積分の積分順序の変更

問題文全文(内容文):
$\displaystyle \int_{0}^{2}dy\displaystyle \int_{y}^{2}x\sqrt{ x^3+1 }\ dx$を計算せよ。
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2}dy\displaystyle \int_{y}^{2}x\sqrt{ x^3+1 }\ dx$を計算せよ。
投稿日:2022.02.16

<関連動画>

重積分⑪【f(x,y)の領域Dにおける平均】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$Z=f(x,y)$のDにおける平均
${}^{\exists}h \in \mathbb{R}$
$h×D=∬_D f(x,y)dxdy$
この動画を見る 

#58数検1級1次「ぱっと見はちょろそうだけど・・・」 #方程式

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
方程式
$x^6-14x^4+17x^2-4=0$を解け。

出典:数検1級1次
この動画を見る 

練習問題33 数検1級1次 微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\dfrac{dy}{dx}=(x+y)^2$
の一般解を求めよ.
この動画を見る 

微分方程式⑨【連立微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{dx}{dt}=4y-\cos t \\
\dfrac{dy}{dt}=-x+\sin t
\end{array}
\right.
\end{eqnarray}$

これを解け.
この動画を見る 

微分方程式⑥【2階微分方程式の一般解】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\frac{d^2x}{dt^2}=-2\frac{dx}{dt}$
(1)$x=c_1e^{-2t}+c_2$ $(c_1,c_2:定数)$
は一般解であることを示せ
(2)t=0のときx=1,$\frac{dx}{dt}=2$をみたす解を求めよ
(3)t=0のときx=0
t=1のときx=1
をみたす解を求めよ。
この動画を見る 
PAGE TOP