#50数検1級1次 過去問 重積分の積分順序の変更 - 質問解決D.B.(データベース)

#50数検1級1次 過去問 重積分の積分順序の変更

問題文全文(内容文):
$\displaystyle \int_{0}^{2}dy\displaystyle \int_{y}^{2}x\sqrt{ x^3+1 }\ dx$を計算せよ。
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2}dy\displaystyle \int_{y}^{2}x\sqrt{ x^3+1 }\ dx$を計算せよ。
投稿日:2022.02.16

<関連動画>

数検1級1次過去問 #微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$y(0)=1,\ y'(0)=5$
$y''-6y'+9y=6e^{3x}$を満たす微分方程式の解を求めよ。

出典:数字検定1級1次
この動画を見る 

20年5月数学検定1級1次試験(合同式)

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$2018n \equiv 2(mod 1000)$をみたす最小の自然数$n$を求めよ.

20年5月数学検定1級1次試験(合同式)過去問
この動画を見る 

#60数検1級1次「ええ問題!落とし穴に注意」 数検1級1次

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
全ての実数$x$について
$\displaystyle \frac{\pi}{2} \lt \tan^{-1}x \lt \displaystyle \frac{\pi}{2}$とするとき、次の値を求めよ。
$\tan^{-1}1+\tan^{-1}2+\tan^{-1}3$

出典:数検1級1次
この動画を見る 

練習問題44 東京工業大学 極限値 数検1級 教員採用試験(数学)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }(\displaystyle \frac{{}_{ 3n } C_n}{{}_{ 2n } C_n})^\frac{1}{n}$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$

出典:東京工業大学 練習問題
この動画を見る 

20年5月数学検定1級1次試験(三角関数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$\tan(2Arc\tan\dfrac{1}{3}+Arc\tan\dfrac{1}{12})$
$Arc\tan a=\tan^{-1}a=t\Leftrightarrow t=\tan a$
$\tan(\tan^{-1}a)=a$
$\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$

20年5月数学検定1級1次試験(三角関数)過去問
この動画を見る 
PAGE TOP