数学「大学入試良問集」【1−1 数と式】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【1−1 数と式】を宇宙一わかりやすく

問題文全文(内容文):
次の問いに答えよ。
(1)
$a^2+b^2+c^2=1$を満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$ab+bc+ca$を$x$の2次式で表せ。

(2)
$a^2+b^2+c^2=1,\ a^3+b^3+c^3=0,\ abc=3$をすべて満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$x^3-3x$の値を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$a^2+b^2+c^2=1$を満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$ab+bc+ca$を$x$の2次式で表せ。

(2)
$a^2+b^2+c^2=1,\ a^3+b^3+c^3=0,\ abc=3$をすべて満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$x^3-3x$の値を求めよ。
投稿日:2021.03.11

<関連動画>

横浜市(医)複素数の2次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'00横浜市立大学過去問題
虚部が正の複素数Zで$iZ^2+2iZ+\frac{1}{2}+i=0$をみたすZを
$Z=a+bi$(a,b実数.b>0)の形で求めよ。
この動画を見る 

大学入試問題#670「これ気づきますよね」 愛知工業大学(2023) 三角関数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛知工業大学
指導講師: ますただ
問題文全文(内容文):
$-\displaystyle \frac{\pi}{4} \leqq x \leqq \displaystyle \frac{\pi}{4}$
$\displaystyle \frac{1+\sqrt{ 3 }\tan\ x}{\sqrt{ 3 }-\tan\ x}$の最大値と最小値を求めよ

出典:2023年愛知工業大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(3)〜指数法則と式の値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)実数$a$が$2^a-2^{-a}=3$を満たしているとき、$2^a=\boxed{\ \ ウ\ \ }$であり、

$4^a-4^{-a}=\boxed{\ \ エ\ \ }$
である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

大学入試問題#536「計算力大事」 福島県立医科大学(2021) #微積の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
すべての実数$x$に対して$f(x)=x+\displaystyle \int_{0}^{1} 2^{2t+x}f(t)\ dt$を満たすとき$f(0)$を求めよ

出典:2021年福島県立医科大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x-(t^2+2)y+4t+2=0$
を考える。

(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。

(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。

(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP