【高校受験対策/数学】死守49 - 質問解決D.B.(データベース)

【高校受験対策/数学】死守49

問題文全文(内容文):
高校受験対策・死守49

①$-9-6\div3$を計算しなさい。

➁$3a+2-(\frac{1}{3}a+1)$を計算しなさい。

③$90$を素因数分解しなさい。

④$(\sqrt{8}+1)(\sqrt{2}-3)$を計算しなさい。


$ax+by=1$
$bx-2ay=8$
の解が$x-2,y=3$であるとき$a,b$の値をそれぞれ求めなさい。


右図の四面体ABCDにおいて、辺を直線とみたとき、
直線ABとねじれの位置にある直線を答えなさい。


1、2、3、4の数字が書かれた4個の玉が入った袋がある。
この袋の中から2個の玉を1個ずつ順に取り出す。
1個目の玉に書かれた数を$a$、2個目の玉に書かれた数を$b$とするとき、$a^2 \times b \div 2ab^2=1$が成り立つ確率を 求めなさい。
ただし、どの玉の取り出し方も同様に確からしいとする。


右の表はある部活動の1年生 7人、2年生8人のハンドボール投げ の記録である。
1年生の記録の中央値と2年生の記録の中央値が等しいとき、$x$の値を求めなさい。
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守49

①$-9-6\div3$を計算しなさい。

➁$3a+2-(\frac{1}{3}a+1)$を計算しなさい。

③$90$を素因数分解しなさい。

④$(\sqrt{8}+1)(\sqrt{2}-3)$を計算しなさい。


$ax+by=1$
$bx-2ay=8$
の解が$x-2,y=3$であるとき$a,b$の値をそれぞれ求めなさい。


右図の四面体ABCDにおいて、辺を直線とみたとき、
直線ABとねじれの位置にある直線を答えなさい。


1、2、3、4の数字が書かれた4個の玉が入った袋がある。
この袋の中から2個の玉を1個ずつ順に取り出す。
1個目の玉に書かれた数を$a$、2個目の玉に書かれた数を$b$とするとき、$a^2 \times b \div 2ab^2=1$が成り立つ確率を 求めなさい。
ただし、どの玉の取り出し方も同様に確からしいとする。


右の表はある部活動の1年生 7人、2年生8人のハンドボール投げ の記録である。
1年生の記録の中央値と2年生の記録の中央値が等しいとき、$x$の値を求めなさい。
投稿日:2020.01.30

<関連動画>

【「分かった」ことを「説明」するには…!】図形:富山県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ l,m$は平行であり,$AC=BC$である.
$ \angle x$は何度であるか.

富山県公立高等学校過去問
この動画を見る 

【出題意図を読み取れ!】因数分解:ラ・サール高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)#ラ・サール高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問に答えよ.
$ 3a(a-2b)-(a-2b)-(6b+2)$を因数分解せよ.

ラサール高校過去問
この動画を見る 

指数の計算 函館ラ・サール B

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{1000}=a$とすると
$2^{1002} - 2^{999}=\boxed{?}a$

函館ラ・サール
この動画を見る 

2023高校入試数学解説47問目 見えないものを見ようとして 灘高校

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
BD=DC=CA
BE=AE
$\angle ABC=?$
*図は動画内参照

2023 灘高等学校
この動画を見る 

【本質的には同じこと…!】文字式:明治大学付属中野高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)#明治大学付属中野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
等式$ \dfrac{1}{x}-\dfrac{2}{y}=3 $が成り立つとき
$ \dfrac{6x-3y}{3xy-2x+y}$の値を求めなさい.
※$ x,y $はともに$ 0 $でない.

明大中野高校過去問
この動画を見る 
PAGE TOP