【中学数学】確率の裏技~取り扱い注意ね~【中2数学】 - 質問解決D.B.(データベース)

【中学数学】確率の裏技~取り扱い注意ね~【中2数学】

問題文全文(内容文):
(1) 袋の中に赤玉が2個、白玉が1個、青玉が1個入っている。この袋から同時に2個取り出すとき、2個とも赤玉である確率を求めよ。
(2) 袋の中に赤玉が4個、白玉が2個入っている。この袋から同時に2個取り出すとき、赤玉と白玉が1つずつ取り出される確率を求めよ。
(3) 袋の中に赤、白、青の玉がそれぞれ2個入っている。1回取り出した玉を袋に戻して、2回目を取り出すとき、取り出した2つの玉がどちらも青である確率を求めよ。
(4) 袋の中に赤玉4個、白玉2個が入っている。この袋から2個同時に取り出すとき、少なくとも1個は白玉が取り出される確率を求めよ。
単元: #数学(中学生)#中2数学#確率
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 袋の中に赤玉が2個、白玉が1個、青玉が1個入っている。この袋から同時に2個取り出すとき、2個とも赤玉である確率を求めよ。
(2) 袋の中に赤玉が4個、白玉が2個入っている。この袋から同時に2個取り出すとき、赤玉と白玉が1つずつ取り出される確率を求めよ。
(3) 袋の中に赤、白、青の玉がそれぞれ2個入っている。1回取り出した玉を袋に戻して、2回目を取り出すとき、取り出した2つの玉がどちらも青である確率を求めよ。
(4) 袋の中に赤玉4個、白玉2個が入っている。この袋から2個同時に取り出すとき、少なくとも1個は白玉が取り出される確率を求めよ。
投稿日:2022.02.12

<関連動画>

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

①$(-3)^2+2 \times (-5)$を計算しなさい。

②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。

③$(-4xy)^2×(-3x)$を計算しなさい。

④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$

⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。

⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。

②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。

⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。

⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。

⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 

【ルーチン】座標上の三角形の面積~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
【ルーチン】座標上の三角形の面積~全国入試問題解法

グラフ上の3点を結んで
三角形の面積を求めよ。
$ S=\displaystyle \frac{1}{2}|x_1y_2-x_2y_1|$
※図は動画内参照
この動画を見る 

灘高校 数学

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABCと△DEFは合同な正三角形
正三角形の1辺の長さ=?
*図は動画内参照

灘高等学校
この動画を見る 

【中学数学】数学用語チェック絵本 act2 vol.2連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
中2 連立方程式の単元の用語をチェック!
この動画を見る 

【数学】中2-36 一次関数の交点をだす① 基本編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
関数の交点をだすなら①____を使おう!

◎交点の座標をだそう!
②$\begin{eqnarray}
\left\{
\begin{array}{l}
y = 3x-5 \\
x +2y =11
\end{array}
\right.
\end{eqnarray}$

③※動画内参照
この動画を見る 
PAGE TOP