絶妙な係数 - 質問解決D.B.(データベース)

絶妙な係数

問題文全文(内容文):
$x,y,z$自然数とする.
\begin{eqnarray}
\left\{
\begin{array}{l}
7x^2 - 3y^2+4z^2 = 8 \\
16x^2 - 7y^2+9z^2 = -3
\end{array}
\right.
\end{eqnarray}
単元: #大学入試過去問(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$自然数とする.
\begin{eqnarray}
\left\{
\begin{array}{l}
7x^2 - 3y^2+4z^2 = 8 \\
16x^2 - 7y^2+9z^2 = -3
\end{array}
\right.
\end{eqnarray}
投稿日:2023.10.08

<関連動画>

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第2問〜微分・積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
$a \gt 0$とし、$f(x)=x^2-(4a-2)x+4a^2+1$ とおく。座標平面上で、放物線
$y=x^2+2x+1$ を$C,$放物線$y=f(x)$を$D$とする。また、$l$を$C$と$D$の両方に
接する直線とする。

(1)lの方程式を求めよう。
$l$と$C$は点$(t,$ $t^2+2t+1)$において接するとすると、$l$の方程式は
$y=\left(\boxed{\ \ ア\ \ }\ t+\boxed{\ \ イ\ \ }\right)\ x$$-t^2+\boxed{\ \ ウ\ \ }$ $\cdots$①
である。また、$l$と$D$は点$(s,$ $f(s))$において接するとすると、$l$の方程式は
$y=\left(\boxed{\ \ エ\ \ }\ s-\boxed{\ \ オ\ \ }\ +\boxed{\ \ カ\ \ }\right)\ x$$-s^2+\boxed{\ \ キ\ \ }\ a^2+\boxed{\ \ ク\ \ }$ $\cdots$②

である。ここで、①と②は同じ直線を表しているので、$t=\boxed{\ \ ケ\ \ },$
$s=\boxed{\ \ コ\ \ }\ a$が成り立つ。
したがって、$l$の方程式は$y=\boxed{\ \ サ\ \ }\ x+\boxed{\ \ シ\ \ }$である。

(2)二つの放物線$C,D$の交点のx座標は$\boxed{\ \ ス\ \ }$である。
$C$と直線$\ t,$および直線$x=\boxed{\ \ ス\ \ }$で囲まれた図形の面積を$S$とすると
$S=\displaystyle \frac{a^{\boxed{セ}}}{\boxed{\ \ ソ\ \ }}$である。

(3)$a \geqq \displaystyle \frac{1}{2}$とする。二つの放物線$C,D$と直線$l$で囲まれた図形の中で
$0 \leqq x \leqq 1$を満たす部分の面積$T$は、$a \gt \boxed{\ \ タ\ \ }$のとき、$a$の値によらず
$T=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$\displaystyle \frac{1}{2} \leqq a \leqq \boxed{\ \ タ\ \ }$のとき
$T=-\boxed{\ \ テ\ \ }\ a^3+\boxed{\ \ ト\ \ }\ a^2$$-\boxed{\ \ ナ\ \ }\ a+\displaystyle \frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}$
である。

(4)次に、(2),(3)で定めた$S,T$に対して、$U=2T-3S$とおく。$a$が
$\displaystyle \frac{1}{2} \leqq a \leqq \boxed{\ \ タ\ \ }$の範囲を動くとき、$Uはa=\displaystyle \frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$で
最大値$\displaystyle \frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒフ\ \ }}$をとる。

2020センター試験過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(3)〜三角関数の最大最小の種類

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)関数$f(\theta)=\cos2\theta+2\cos\theta$が
$0 \leqq \theta \leqq \pi$ の範囲で最小値をとるのは$\theta=\boxed{\ \ ア\ \ }$
のときであり、最大値を取るのは$\theta=\boxed{\ \ イ\ \ }$のときである。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田の数学〜東北大学2023年理系第5問〜空間ベクトルと内積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 四面体OABCにおいて、$\overrightarrow{a}$=$\overrightarrow{OA}$, $\overrightarrow{b}$=$\overrightarrow{OB}$, $\overrightarrow{c}$=$\overrightarrow{OC}$とおき、次が成り立つとする。
$\angle$AOB=60°, |$\overrightarrow{a}$|=2, |$\overrightarrow{b}$|=3, |$\overrightarrow{c}$|=$\sqrt 6$, $\overrightarrow{b}$・$\overrightarrow{c}$=3
ただし、$\overrightarrow{b}$・$\overrightarrow{c}$は、2つのベクトル$\overrightarrow{b}$と$\overrightarrow{c}$の内積を表す。さらに、線分OCと線分ABは垂直であるとする。点Cから3点O, A, Bを含む平面に下ろした垂線をCHとし、点Oから3点A, B, Cを含む平面に下ろした垂線をOKとする。
(1)$\overrightarrow{a}$・$\overrightarrow{b}$と$\overrightarrow{c}$・$\overrightarrow{a}$を求めよ。
(2)ベクトル$\overrightarrow{OH}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ。
(3)ベクトル$\overrightarrow{c}$とベクトル$\overrightarrow{HK}$は平行であることを示せ。

2023東北大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第4問〜対数不等式と数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$
$k$を実数の定数とする。実数$x$は不等式
(*)$2\log_5x-\log_5(6x-5^k) \lt k-1$
を満たすとする。

(1)不等式(*)を満たすxの値の範囲を、$k$を用いて表せ。

(2)$k$を自然数とする。(*)を満たす$x$のうち奇数の個数を$a_k$とし
$S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)$
とおく。$a_k$を$k$の式で表し、さらに$S_n$を$n$の式で表せ。

(3)(2)の$S_n$に対して、$S_n+n$が10桁の整数となるような自然数$n$
の値を求めよ。なお、必要があれば$0.30 \lt \log_{10}2 \lt 0.31$を用いよ。

2021慶應義塾大学経済学過去問
この動画を見る 

福田のわかった数学〜高校1年生034〜背理法(2)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 背理法(2)
$\sqrt2,\sqrt[3]3$が無理数であることを既知として次を証明せよ。
$p,q,\sqrt2p+\sqrt[3]3q$が全て有理数 $\Rightarrow p=q=0$
この動画を見る 
PAGE TOP