絶妙な係数 - 質問解決D.B.(データベース)

絶妙な係数

問題文全文(内容文):
$x,y,z$自然数とする.
\begin{eqnarray}
\left\{
\begin{array}{l}
7x^2 - 3y^2+4z^2 = 8 \\
16x^2 - 7y^2+9z^2 = -3
\end{array}
\right.
\end{eqnarray}
単元: #大学入試過去問(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$自然数とする.
\begin{eqnarray}
\left\{
\begin{array}{l}
7x^2 - 3y^2+4z^2 = 8 \\
16x^2 - 7y^2+9z^2 = -3
\end{array}
\right.
\end{eqnarray}
投稿日:2023.10.08

<関連動画>

早稲田大(政)方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$-90^{ \circ } \lt \theta \lt 90^{ \circ }$
$(\sin \theta)x^2+2(\cos2\theta)x+cos2\theta=0$が少なくとも1つの実数解をもつような$\theta$の範囲を求めよ

出典:2001年早稲田大学 政治経済学部 過去問
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(2)〜条件付き最大最小問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)2つの実数$x$,$y$が$x^2$+$y^2$=1 を満たすとき、$z$=2$x$+$y$のとりうる値の範囲は$\boxed{\ \ イ\ \ }$である。
この動画を見る 

関西医科大 分数不等式 整数問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022関西医科大学過去問題
$f(x)=\frac{6x^2+17x+10}{3x-2}$
①$f(x)>0$をみたすxの範囲
②f(n)が正の整数となる整数n
この動画を見る 

福田の数学〜名古屋大学2023年理系第3問〜方程式の負の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ (1)方程式$e^x$=$\frac{2x^3}{x-1}$ の負の実数解の個数を求めよ。
(2)$y$=$x(x^2-3)$と$y$=$e^x$のグラフの$x$<0における共有点の個数を求めよ。
(3)$a$を正の実数とし、関数$f(x)$=$x(x^2-a)$を考える。$y$=$f(x)$と$y$=$e^x$のグラフの$x$<0における共有点は1個のみであるとする。このような$a$がただ1つ存在することを示せ。

2023名古屋大学理系過去問
この動画を見る 

大分大(医) 整数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7(x+y+z)=2(xy+yz+zx)$
$x,y,z$自然数 $x \leqq y \leqq z$
$(x,y,z)$の組すべて求めよ

出典:2007年大分大学医学部 過去問
この動画を見る 
PAGE TOP