正四角錐を切断 筑波大学附属高校 - 質問解決D.B.(データベース)

正四角錐を切断  筑波大学附属高校

問題文全文(内容文):
すべての辺の長さが等しい正四角錐
点P,Qは中点
3点A,P,Qを含む面で切断
AR=?
*図は動画内参照

筑波大学附属高等学校
単元: #数学(中学生)#立体図形#立体切断#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
すべての辺の長さが等しい正四角錐
点P,Qは中点
3点A,P,Qを含む面で切断
AR=?
*図は動画内参照

筑波大学附属高等学校
投稿日:2021.10.27

<関連動画>

【高校受験対策】数学-死守29

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#1次関数#2次関数#円#立体図形#立体切断#立体図形その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$16a \div (- 8)$を計算しなさい。

②$-12 + 2\times (- 5)$を計算しなさい。

③$\sqrt{50} - 2\sqrt{2}$を計算しなさい。

④$18ab \div \dfrac{3}{8}a \times b$を計算しなさい。

⑤$x = sqrt3 - 3$のとき、$x ^ 2 + 6x$の値を求めなさい。

⑥2次方程式$x ^ 2 + 3x = 8x - 2$を解きなさい。

⑦$\sqrt7 = 2.646$として、$\sqrt{0.07} $の値を求めなさい。

⑧右の図1は、立方体の展開図である。 この展開図を組み立てて作られる立方体について、
辺$AB$と垂直な面をア~カのなかからすべて選び、符号で書きなさい。

⑨その値が正の値をとらない関数を、次のア~エから1つ選び、符号で書きなさい。

ア→$y= -\dfrac{x}{2}$
イ→$y = -\dfrac{2}{x}$
ウ→$y = -2x + 3$
エ→$y = - 2x ^ 2$

⑩右の図2は、円錐の展開図である。
側面になるおうぎ形の半径が8cm、 底面になる円の半径が3cmのとき、
おうぎ形の面積を求めなさい。 ただし、円周率は$\pi$とする。

図は動画内参照
この動画を見る 

【SPX小6算数手元解説】多面体を切る➀【D-支援解説】

アイキャッチ画像
単元: #算数(中学受験)#立体図形#立体切断#体積・表面積・回転体・水量・変化のグラフ#立体図形その他
教材: #SPX#6年算数W-支援#中学受験教材
指導講師: 受験算数の森
問題文全文(内容文):
下図のように立方体から各頂点に集まる3つの辺の真ん中を通る平面で、かどを切り取って1つの立方体を作ります。この立体について、次の問いに答えなさい。
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第1問(2)〜正八面体に内接する立方体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#立体図形#立体切断#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)$a$は$a\gt 0$を満たす実数とする。

$xyz$空間に$6$点$(a,0,0),(0,a,0),(0,0,a),$

$(-a,0,0)(0,-a,0)(0,0,-a)$を頂点とする多面体

$S$がある。

(i)$S$の体積は$\boxed{オ}$である。

(ii)立方体$U$のすべての頂点が$S$の辺上にあるとき、

$U$の体積は$\boxed{カ}$である。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

【受験算数】立体切断の基本「3つの手順」

アイキャッチ画像
単元: #算数(中学受験)#立体図形#立体切断
指導講師: 理数個別チャンネル
問題文全文(内容文):
中学受験算数に必須な「立体切断の解き方」を3stepで解説します!
この動画を見る 

中学受験算数「立体図形の相似」小学4年生~6年生対象【毎日配信】

アイキャッチ画像
単元: #算数(中学受験)#立体図形#立体切断#体積・表面積・回転体・水量・変化のグラフ
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
第60回立体図形の相似

例1
次の図のような台形ABCDを、辺DCを軸として、 1回転させてできる立体の体積は何㎤ですか。

例2
次の図のような立方体を、P.Q.B.Dを通るように 切断したとき、点Cをふくむ立体の体積は何㎤ですか。
この動画を見る 
PAGE TOP