【中2 数学】 中2-22 連立方程式の利用 (食塩水) - 質問解決D.B.(データベース)

【中2 数学】  中2-22  連立方程式の利用 (食塩水)

問題文全文(内容文):
濃度(%)=$\displaystyle \frac{食塩}{食塩水} \times 100$
①190gの水に10gの食塩をとかしたとき、
食塩水の濃度は?
②7%の食塩水300gにとけている食塩は?
③ 8%と15%の食塩水をまぜて、 10%の食塩水を700g作ります。それぞれ?
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
濃度(%)=$\displaystyle \frac{食塩}{食塩水} \times 100$
①190gの水に10gの食塩をとかしたとき、
食塩水の濃度は?
②7%の食塩水300gにとけている食塩は?
③ 8%と15%の食塩水をまぜて、 10%の食塩水を700g作ります。それぞれ?
投稿日:2013.02.13

<関連動画>

【中学数学・数A】中高一貫校問題集2(代数編)267:確率と標本調査:確率の計算:5枚のカードを並べるときに両端や隣り合う場合の確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
教材: #TK数学#TK数学問題集2(代数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,B,C,D,Eの文字が書かれたカードが1枚ずつある。このカードをよく混ぜて1列に並べるとき、次のような場合の確率を求めよう。
(1)Aが右端にくる。
(2)AとEが両端にくる。
(3)BとCが隣り合う。
この動画を見る 

【中2数学/期末テスト対策】連立方程式の解き方

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
y=2x-7 \\
3x-2y=8
\end{array}
\right.
\end{eqnarray}$

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=6 \\
3x-y=-14
\end{array}
\right.
\end{eqnarray}$

(3)
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-y=11 \\
3x+2y=4
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【テスト対策・中1】1章-1

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしなさい.

①$7+5\times (-2)$

②$5-3\times (2-7)$

③$17-2^2 \times (-3)^2$

④$(-3)^3-(10-5^2)$

⑤$-4^2-(-4-17)\div 3$

⑥$\left(-\dfrac{2}{5}\right)\div (-0.6) \div \left(-\dfrac{8}{9}\right)$
この動画を見る 

【高校受験対策】数学-関数20

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,直線$\ell$は関数$y=-\dfrac{3}{2}x+12$のグラフで,
点$A$は直線$\ell$と$x$軸との交点,
点$B$は直線上の点で$x$座標は$6$である.
このとき,次の各問いに答えなさい.

①関数$Y=-\dfrac{3}{2}x+12$について,
$y$の増加量が$12$のときの$x$の増加量を求めなさい.

②直線$\ell$上の点で,
$y$座標の値が$x$座標の値の$2$倍となる座標を求めなさい.

③点$B$を通り傾きが正の直線と$y$軸,
$x$軸との交点をそれぞれ$C,D$とする.
$△OCD$の面積と$△ABD$の面積が等しくなるとき,
点$C$の座標を求めなさい.

図は動画内参照
この動画を見る 

【数学】中2-54 角度チャレンジ Lv.2

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\angle x,\angle y$の大きさをもとめよう!





③正五角形$ABCDE$

④$AB//CD,\angle BPQ$の二等分線と$\angle DQP$の二等分線の交点を$R$とする。
※図は動画内参照
この動画を見る 
PAGE TOP