東大2020文系第2問 ヨビノリたくみ&東大受験芸人たわし - 質問解決D.B.(データベース)

東大2020文系第2問 ヨビノリたくみ&東大受験芸人たわし

問題文全文(内容文):
4本の直線が縦横に引かれている
交わる箇所の点は16個
この点の中から5個選ぶ
(1)
5個選んだ時に、その点を通らない直線がちょうど2つになる場合の確率を求めよ

(2)
どの直線も少なくとも1つ通る場合の確率を求めよ

出典:2020年東京大学 文系第2問
単元: #数Ⅰ#数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
4本の直線が縦横に引かれている
交わる箇所の点は16個
この点の中から5個選ぶ
(1)
5個選んだ時に、その点を通らない直線がちょうど2つになる場合の確率を求めよ

(2)
どの直線も少なくとも1つ通る場合の確率を求めよ

出典:2020年東京大学 文系第2問
投稿日:2020.03.24

<関連動画>

答えはわかるかもしれないけど、説明できる? 円周角 沖縄県(改)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x,y,zを小さい順に並べよ
*図は動画内参照

沖縄県(改)
この動画を見る 

共通テスト数学1A_第1問を簡単に解く方法教えます

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
[1]$c$を正の整数とする。$x$の2次方程式
  $2x^2+(4c-3)x+2c^2-c-11=0$ について考える。

(1)$c=1$のとき、①の左辺を因数分解すると
  $([ア]x+[イ])(x-[ウ])$
  であるから、①の解は
  $x=-\displaystyle \frac{[イ]}{[ア]},[ウ]$である。

(2)$c=2$のとき、①の解は
  $x=\displaystyle \frac{-[エ] \pm \sqrt{ [オカ] }}{[キ]}$
  であり、大きい方の解を$a$とすると
  $\displaystyle \frac{5}{a}=\displaystyle \frac{[ク] + \sqrt{ [ケコ] }}{[サ]}$
  である。また、$m<\displaystyle \frac{5}{a}<m+1$を満たす整数は[シ]である。

(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解は$c$の値によって、ともに有理数である場合もあれば、
   ともに無理数である場合もあるね。
   $c$がどのような値のときに、解は有理数になるのかな。

花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数$c$の個数は[ス]個である。
この動画を見る 

素因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1280000401=p,q$
$p$は3桁であるとき,これを解け.
この動画を見る 

因数分解&ご報告

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$x^2+119x-3600$
この動画を見る 

単位円周上には無限の有理点

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
単位円周上に$x$座標,$y$座標ともに有理数である点は無限に存在することを示せ.
この動画を見る 
PAGE TOP