【高校受験対策】死守-1 - 質問解決D.B.(データベース)

【高校受験対策】死守-1

問題文全文(内容文):
①$24 \div (7-4)$を計算しなさい.

②$\dfrac{1}{2}+\dfrac{2}{5}$を計算しなさい.

③$7+(-3)\times 4$を計算しなさい.

④$(5x-y)-3(x-5y)$を計算しなさい.

⑤下の連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x = 3y-2 \\
4x-7y=2
\end{array}
\right.
\end{eqnarray}$

⑥$\sqrt{32}-\sqrt 8+\sqrt2 $を計算しなさい.

⑦$x^2-36y^2$を因数分解しなさい.

⑧方程式$x^2+7x+2=0$を解きなさい.
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$24 \div (7-4)$を計算しなさい.

②$\dfrac{1}{2}+\dfrac{2}{5}$を計算しなさい.

③$7+(-3)\times 4$を計算しなさい.

④$(5x-y)-3(x-5y)$を計算しなさい.

⑤下の連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x = 3y-2 \\
4x-7y=2
\end{array}
\right.
\end{eqnarray}$

⑥$\sqrt{32}-\sqrt 8+\sqrt2 $を計算しなさい.

⑦$x^2-36y^2$を因数分解しなさい.

⑧方程式$x^2+7x+2=0$を解きなさい.
投稿日:2016.10.20

<関連動画>

【中1 数学】中1-57 比例 ・ 反比例の利用③ ~動点編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
動く点が①____ところをxとおく!

◎長方形ABCDで、点PはBを出発して毎秒1cmの速さでCまで進む。
点Pが出発してからX秒後の三角形ABPの面積をycm²とする。

②yをxの式で表すと?
③5秒後の面積は?
④面積が27cm²になるのは何秒後?
⑤Xの変域は?
⑥yの変域は?
※図は動画内参照
この動画を見る 

【高校受験対策/数学】死守-84

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#平方根#2次方程式#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守84

①$4-(-6)×2$を計算しなさい。

➁$\frac{x-2y}{ 2 }-\frac{3x-y}{6}$を計算しなさい。

③$(x-3y)(x+4y)-xy$を計算しなさい。

④方程式$\frac{3}{2}x+1=10$を解きなさい。

⑤$a=\sqrt{3}-1$のとき、$a^2+2a$の値を求めなさい。

⑦紅茶が$450ml$、牛乳が$180ml$ある。紅茶と牛乳を$5:3$の 割合で混ぜてミルクティーをつくる。
紅茶を全部使ってミルクティーをつくるには、牛乳はあと何$ml$必要か求めなさい。

⑥方程式$2x^2-5x+1=0$を解きなさい。

⑧$n$は自然数である。
$\sqrt{3n}$が整数となる$n$の値のうち、2番目に 小さいものを求めなさい。

⑨$n$は自然数である。
$10\lt \sqrt{n} \lt11$を満たし、$\sqrt{7n}$が整数となる$n$の値を求めなさい。
この動画を見る 

中1数学「基準との差の平均②(応用編)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~第11回基準との差の平均②~ (応用編)

例題
次の表は、生徒5人の体重を調べ、ある基準 との差を表したものです。
5人の体重の平均が50.2kgのとき、この表は 何kgを基準としたものですか。
この動画を見る 

1はいちいち書くな

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 数学を数楽に
問題文全文(内容文):
$3 \times x = $
$1 \times x = $
この動画を見る 

【受験対策】  数学-図形②

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#相似な図形#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の[図1]のような図形を組み立てて、三角柱の形をした容器をつくりました。
この容器を立てて、中に48$cm^3$の水を入れたとき、水が容器にふれている部分の面積を 求めよう。
ただし、容器の厚みは考えないものとし、水がこぼれることもないものとします。

② 右の[図2]のように、円周上に点A、B、C、Dがあります。
ACとBDの交点をEとし、直線ABと直線CDの交点をF とします。
$\angle BAC=27°\angle AED=87°$のとき、 $\angle AFD$の大きさを求めよう。

③右の[図3]で、△ABCはAB=ACの二等辺三角形です。
辺BC上に点Dをとり、ADを折り目として折り返し、
頂点Bが移った位置をEとします。
辺BCとAEの交点をFと すると、FD=FEになりました。
$\angle BAD=42°$のとき、 $\angle ACB$の大きさを求めよう。
※図は動画内参照
この動画を見る 
PAGE TOP