方程式
これなんで?
【フル】なぜ年齢が当てられるのか?
【題意を式で表せ!】整数:法政大学高等学校~全国入試問題解法
単元:
#数学(中学生)#中1数学#方程式#文字と式#高校入試過去問(数学)#法政大学高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \color{red}{整数a}$を$ \color{red}{7}$で割ると$ \color{red}{4}$余り,$ \color{red}{整数b}$を$ \color{red}{7}$で割ると$ \color{red}{3}$余る.
$ \color{orange}{a^2+2ab}$を$ \color{orange}{7}$で割ったときの$ \color{orange}{余り}$を求めなさい.
法政大高校過去問
この動画を見る
$ \color{red}{整数a}$を$ \color{red}{7}$で割ると$ \color{red}{4}$余り,$ \color{red}{整数b}$を$ \color{red}{7}$で割ると$ \color{red}{3}$余る.
$ \color{orange}{a^2+2ab}$を$ \color{orange}{7}$で割ったときの$ \color{orange}{余り}$を求めなさい.
法政大高校過去問
一次方程式の解法を知る15秒!~全国入試問題解法 #shorts #数学 #高校入試 #動体視力
単元:
#数学(中学生)#中1数学#方程式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
方程式$ 3-\dfrac{x-5}{12}=0.25(3x+2)$を解け.
関西大倉高校過去問
この動画を見る
方程式$ 3-\dfrac{x-5}{12}=0.25(3x+2)$を解け.
関西大倉高校過去問
15秒であるがままに高校入試の数学~全国入試問題解法 #shorts #数学 #高校入試 #動体視力
単元:
#数学(中学生)#中1数学#方程式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 4+5(a-2x)=a-2x $の解が$ x=1 $であるとき,$ a $の値を求めよ.
駿台甲府高校過去問
この動画を見る
$ 4+5(a-2x)=a-2x $の解が$ x=1 $であるとき,$ a $の値を求めよ.
駿台甲府高校過去問
方程式の計算
ただの一次方程式
単元:
#数学(中学生)#中1数学#方程式
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\frac{1}{9}+\frac{1}{153}+\frac{1}{425}+\frac{1}{825}+\frac{1}{1353}=20$を解け
この動画を見る
$\frac{1}{9}+\frac{1}{153}+\frac{1}{425}+\frac{1}{825}+\frac{1}{1353}=20$を解け
【中学数学】数学用語チェック絵本 中1の用語”せめて”これだけは覚えよう!!
単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#比例・反比例#空間図形#資料の活用#文字と式#平面図形
指導講師:
理数個別チャンネル
問題文全文(内容文):
中1で登場する数学用語の中で、せめてこれだけは覚えてほしいものをピックアップ!vol.1~7の方も見てね♪
この動画を見る
中1で登場する数学用語の中で、せめてこれだけは覚えてほしいものをピックアップ!vol.1~7の方も見てね♪
一度は誰もがやってしまうミス
単元:
#数学(中学生)#中1数学#方程式
指導講師:
数学を数楽に
問題文全文(内容文):
・方程式を解け
$\frac{x}{2} + \frac{x}{3} = 5$
・$\frac{x}{2} + \frac{x}{3} $を計算せよ
この動画を見る
・方程式を解け
$\frac{x}{2} + \frac{x}{3} = 5$
・$\frac{x}{2} + \frac{x}{3} $を計算せよ
【中学数学】数学用語チェック絵本 vol 3 方程式
【中学数学】方程式の基礎をどこよりも丁寧に 3-1【中1数学】
小数を含む一次方程式 大阪教育大附属池田
単元:
#数学(中学生)#中1数学#方程式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
1次方程式を解け
$0.2(0.3x-0.7)=0.1$
大阪教育大学附属高等学校池田校舎
この動画を見る
1次方程式を解け
$0.2(0.3x-0.7)=0.1$
大阪教育大学附属高等学校池田校舎
ただの一次方程式
単元:
#数学(中学生)#中1数学#方程式
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \dfrac{x-3}{2021}+ \dfrac{x}{2022}+ \dfrac{x+3}{2023}=9,これを解け.$
この動画を見る
$ \dfrac{x-3}{2021}+ \dfrac{x}{2022}+ \dfrac{x+3}{2023}=9,これを解け.$
ラッキー・ルウが伸びている件理系が考察した結果…
単元:
#数学(中学生)#中1数学#方程式
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
ワンピースのラッキー・ルウの身長が伸びてるみたいなんですけど
実際どうなんですか?
この動画を見る
下記質問の解説動画です
ワンピースのラッキー・ルウの身長が伸びてるみたいなんですけど
実際どうなんですか?
【数検3級】数学検定3級対策問題2~5
単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#式の計算(展開、因数分解)#2次方程式#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師:
理数個別チャンネル
問題文全文(内容文):
数学検定3級対策問題2~5の解説動画です。
この動画を見る
数学検定3級対策問題2~5の解説動画です。
連立方程式の代入法について
ただの指数方程式なんだけど
忘れ物の問題の裏技
単元:
#数学(中学生)#中1数学#方程式
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
弟が5km離れた学校に向かって家を出た。
弟の忘れ物に気づいた兄は、その8分後に家を出て、弟を追いかけた。
弟は50m/分、兄は70m/分だったとき、兄は家を出て何分後に弟に追いつくか求めよ
この動画を見る
弟が5km離れた学校に向かって家を出た。
弟の忘れ物に気づいた兄は、その8分後に家を出て、弟を追いかけた。
弟は50m/分、兄は70m/分だったとき、兄は家を出て何分後に弟に追いつくか求めよ
手を動かすだけの問題
単元:
#方程式#数と式
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{x}-\dfrac{1}{2y}=\dfrac{1}{2x+y}のとき,\dfrac{y^2}{x^2}+\dfrac{x^2}{y^2}の値を求めよ.$
この動画を見る
$ \dfrac{1}{x}-\dfrac{1}{2y}=\dfrac{1}{2x+y}のとき,\dfrac{y^2}{x^2}+\dfrac{x^2}{y^2}の値を求めよ.$
動体視力とYouTubeのAIを鍛える動画~全国入試問題解法 #Shorts
単元:
#数学(中学生)#中1数学#方程式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えなさい.
$x-7=\dfrac{4x-9}{3}$
方程式を解きなさい.
千葉県高校過去問
この動画を見る
次の問いに答えなさい.
$x-7=\dfrac{4x-9}{3}$
方程式を解きなさい.
千葉県高校過去問
食塩水苦手な人見て!
食塩水の濃度の必勝法
【中学数学】食塩水の濃度~この動画1つで完璧に~【中1数学】
食塩水の濃度のイメージある?
高校入試だけど中学生より高校生向けの問題 早大学院(改)
単元:
#数学(中学生)#中1数学#中3数学#方程式#2次方程式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
xについての方程式(a,b,cは整数)
$ax^2+bx+c = 0$について
$b^2-4ac > 0$ならば必ず2つの解をもつ。
○か✖か?
早稲田大学 高等学院(改)
この動画を見る
xについての方程式(a,b,cは整数)
$ax^2+bx+c = 0$について
$b^2-4ac > 0$ならば必ず2つの解をもつ。
○か✖か?
早稲田大学 高等学院(改)
【高校受験対策/数学】死守-97
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守97
①$5-(-7)$を計算しなさい。
➁$\sqrt{ 27 }+\sqrt{ 12 }$を計算しなさい。
③$(\sqrt{ 2 }-1)^2$を計算しなさい。
④連立方程式を解きなさい。
$2x-3y=-4$
$x+2y=5$
⑤二次方程式$3x^2+7x+1=0$を解きなさい。
⑥相似な2つの立体$F,G$がある。
$F$と$G$の相似比が$3:5$であり、$F$の体積が$81\pi$$cm^3$のとき、$G$の体積を求めなさい。
⑦右の図のように、4点$A,B,C,D$が線分$BC$を直径とする 同じ円周上にあるとき、
$\angle ADB$の大きさを求めなさい。
⑧右下の図のような線分$OA$がある。
$\angle AOB=30°,OA=OB$となる二等辺三角形$OAB$を作図しなさい。
また点$B$の位置を示す文字$B$も図の中に書き入れなさい。
ただし、作図には定規とコンパスを用い、作図に用いた線は消えずに残しておくこと。
この動画を見る
高校受験対策・死守97
①$5-(-7)$を計算しなさい。
➁$\sqrt{ 27 }+\sqrt{ 12 }$を計算しなさい。
③$(\sqrt{ 2 }-1)^2$を計算しなさい。
④連立方程式を解きなさい。
$2x-3y=-4$
$x+2y=5$
⑤二次方程式$3x^2+7x+1=0$を解きなさい。
⑥相似な2つの立体$F,G$がある。
$F$と$G$の相似比が$3:5$であり、$F$の体積が$81\pi$$cm^3$のとき、$G$の体積を求めなさい。
⑦右の図のように、4点$A,B,C,D$が線分$BC$を直径とする 同じ円周上にあるとき、
$\angle ADB$の大きさを求めなさい。
⑧右下の図のような線分$OA$がある。
$\angle AOB=30°,OA=OB$となる二等辺三角形$OAB$を作図しなさい。
また点$B$の位置を示す文字$B$も図の中に書き入れなさい。
ただし、作図には定規とコンパスを用い、作図に用いた線は消えずに残しておくこと。
【高校受験対策/数学】死守-96
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#確率#2次関数#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守96
①$7+2×(-6)$を計算せよ。
②$3(2a+b)-2(4a-5b)$を計算せよ。
③$\frac{14}{\sqrt2}-\sqrt32$を計算せよ。
④2次方程式$(x+6)(x-5)=9x-10$を解け。
⑤関数$y=\frac{1}{2}x^2$について、$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めよ。
⑥関数$y=\frac{ 6 }{ x }$のグラフをかけ。
⑦$△ABC$において、$\angle A=90°,AB=6cm,BC=10cm$のとき、辺$AC$の長さを求めよ。
⑧4枚の硬質A、B、C、Dを同時に投げるとき、少なくとも1枚は表が出る確率を求めよ。
ただし、表と裏が出ることは同様に確からしいとする。
⑨右図のように、円$0$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、$△ABC$をつくる。
線分$BO$を延長した直線と線分$AC$と交点を$D$とする。
$\angle BAC=48°$のとき$\angle ADB$の大きさを求めよ。
この動画を見る
高校受験対策・死守96
①$7+2×(-6)$を計算せよ。
②$3(2a+b)-2(4a-5b)$を計算せよ。
③$\frac{14}{\sqrt2}-\sqrt32$を計算せよ。
④2次方程式$(x+6)(x-5)=9x-10$を解け。
⑤関数$y=\frac{1}{2}x^2$について、$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めよ。
⑥関数$y=\frac{ 6 }{ x }$のグラフをかけ。
⑦$△ABC$において、$\angle A=90°,AB=6cm,BC=10cm$のとき、辺$AC$の長さを求めよ。
⑧4枚の硬質A、B、C、Dを同時に投げるとき、少なくとも1枚は表が出る確率を求めよ。
ただし、表と裏が出ることは同様に確からしいとする。
⑨右図のように、円$0$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、$△ABC$をつくる。
線分$BO$を延長した直線と線分$AC$と交点を$D$とする。
$\angle BAC=48°$のとき$\angle ADB$の大きさを求めよ。
【高校受験対策/数学】死守63
単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#平方根#2次方程式#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守63
①
下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照
➁
右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。
③
1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。
④
ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。
⑤
下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
この動画を見る
高校受験対策・死守63
①
下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照
➁
右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。
③
1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。
④
ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。
⑤
下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
【高校受験対策/数学】死守81(問題作りました)
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#平行と合同#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守81
①$81÷(-3)-(-11)$を計算しなさい。
②次の式を因数分解しなさい。
$(x-2)^2-18(x-2)+81$
③次の連立方程式を解きなさい。
$3x+11y=13$
$2x-3y=19$
④$311x-8y=1$を$y$について解きなさい。
⑤絶対値が$81$である数をすべて書きなさい。
⑥右の図において2直線$l,m$は平行である。
このとき、$\angle x$の大きさを求めなさい。
⑦3点$(-3,-11)$、$(2,9)$、$(k,81)$が一直線上にあるとき、 $k$の値を求めなさい。
⑧定価$8100$円のパーカーが$a$割引で売っていた。
それを買おうとレジに持っていくと、キャンペーンだったようで、そこからさらに$500$円引きしてくれた。
このとき、パーカーを買ったときの代金を$a$を使った式で表しなさい。
ただし消費税については考えないものとする。
この動画を見る
高校受験対策・死守81
①$81÷(-3)-(-11)$を計算しなさい。
②次の式を因数分解しなさい。
$(x-2)^2-18(x-2)+81$
③次の連立方程式を解きなさい。
$3x+11y=13$
$2x-3y=19$
④$311x-8y=1$を$y$について解きなさい。
⑤絶対値が$81$である数をすべて書きなさい。
⑥右の図において2直線$l,m$は平行である。
このとき、$\angle x$の大きさを求めなさい。
⑦3点$(-3,-11)$、$(2,9)$、$(k,81)$が一直線上にあるとき、 $k$の値を求めなさい。
⑧定価$8100$円のパーカーが$a$割引で売っていた。
それを買おうとレジに持っていくと、キャンペーンだったようで、そこからさらに$500$円引きしてくれた。
このとき、パーカーを買ったときの代金を$a$を使った式で表しなさい。
ただし消費税については考えないものとする。
【高校受験対策/数学】死守-80
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#1次関数#確率#2次関数#文字と式#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守80
①$-3+(-4)×5$を計算しなさい。
②$4xy÷8x×6y$を計算しなさい。
③$\frac{4x-y}{2}-(2x-3y)$を計算しなさい。
④連立方程式を解きなさい。
$5x-4y=9$
$2x-3y=5$
③下の図で、$\angle x$の大きさを求めなさい。
④地球の直径は約$12700km$です。
有効数字が$1,2,7$であるとして、この距離を整数部分が1けたの数と、10の何乗かの積の形で表すと右のようになります。
アとイにあてはまる数を書きなさい。
⑦半径が$2cm$の球の体積と表面積を求めなさい。ただし円周率は$\pi$とする。
⑧赤玉3個と白玉2個が入っている袋があります。
この袋から玉を1個取り出して色を確認して、それを袋に戻してから、もう一度玉を1個取り出して色を確認します。
このとき、2回とも同じ色の玉が出る確率を求めなさい。
ただし、袋の中は見えないものとし、どの玉が出ることも同様に確からしいものとする。
⑨関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq 3$のとき、$y$の変域は$-3b \leqq y \leqq 0$となりました。
このとき$a$の値を求めなさい。
この動画を見る
高校受験対策・死守80
①$-3+(-4)×5$を計算しなさい。
②$4xy÷8x×6y$を計算しなさい。
③$\frac{4x-y}{2}-(2x-3y)$を計算しなさい。
④連立方程式を解きなさい。
$5x-4y=9$
$2x-3y=5$
③下の図で、$\angle x$の大きさを求めなさい。
④地球の直径は約$12700km$です。
有効数字が$1,2,7$であるとして、この距離を整数部分が1けたの数と、10の何乗かの積の形で表すと右のようになります。
アとイにあてはまる数を書きなさい。
⑦半径が$2cm$の球の体積と表面積を求めなさい。ただし円周率は$\pi$とする。
⑧赤玉3個と白玉2個が入っている袋があります。
この袋から玉を1個取り出して色を確認して、それを袋に戻してから、もう一度玉を1個取り出して色を確認します。
このとき、2回とも同じ色の玉が出る確率を求めなさい。
ただし、袋の中は見えないものとし、どの玉が出ることも同様に確からしいものとする。
⑨関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq 3$のとき、$y$の変域は$-3b \leqq y \leqq 0$となりました。
このとき$a$の値を求めなさい。