【数学】中2-24 連立方程式の利用⑤ 割合の応用編 - 質問解決D.B.(データベース)

【数学】中2-24 連立方程式の利用⑤ 割合の応用編

問題文全文(内容文):
①ゆきさんは、Tシャツとスカートを$1$組買いました。
定価で買うと$4800$円のところを、
Tシャツを定価の$2$割引き、
スカートを定価の$30%$引きで買ったので
$3540$円でした。
それぞれの定価はいくら?

②$12%$の食塩水と$7%$の食塩水を混ぜ合わせて、$10%$の食塩水を$500g$つくります。
$2$種類の食塩水をそれぞれ何$g$ずつ混ぜればいい?
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①ゆきさんは、Tシャツとスカートを$1$組買いました。
定価で買うと$4800$円のところを、
Tシャツを定価の$2$割引き、
スカートを定価の$30%$引きで買ったので
$3540$円でした。
それぞれの定価はいくら?

②$12%$の食塩水と$7%$の食塩水を混ぜ合わせて、$10%$の食塩水を$500g$つくります。
$2$種類の食塩水をそれぞれ何$g$ずつ混ぜればいい?
投稿日:2013.05.24

<関連動画>

【テスト対策・中1】1章-1

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしなさい.

①$7+5\times (-2)$

②$5-3\times (2-7)$

③$17-2^2 \times (-3)^2$

④$(-3)^3-(10-5^2)$

⑤$-4^2-(-4-17)\div 3$

⑥$\left(-\dfrac{2}{5}\right)\div (-0.6) \div \left(-\dfrac{8}{9}\right)$
この動画を見る 

【高校受験対策】数学-死守24

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#円#立体図形#立体切断#立体図形その他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-7+9$を計算しなさい.

②$1+\left(-\dfrac{5}{6}\right)\div \dfrac{1}{3}$を計算しなさい.

③$8(x - y) + 6(x - 2y)$を計算しなさい.

④$\sqrt{27} - \dfrac{6}{\sqrt3}$を計算しなさい.

⑤$x(x + 2) - (x + 4)(x - 3)$を計算しなさい.

⑥絶対値が$2.5$より小さい整数はいくつあるか,求めなさい.

⑦2つの方程式$3x + y = 11$と$x + 3y = 1$両方にあてはまる$x,y$の値の組がある.
このとき,$x^2-y^2$の値を求めなさい.

⑧右の図のおうぎ形$OAB$は,半径$3cm$,中心角$90°$である.
このおうぎ形$OAB$を, $AD$を通る直線$\ell$を軸として1回転させてできる
立体の体積と表面積を求めなさい.
ただし,円周率は$\pi$とする.

⑨右の表は,ある中学校における男子15人の50m走の記録を
度数分布表に表したものである.
この表の8.5秒以上9.0秒未満の階級の相対度数を求めなさい.

図は動画内参照
この動画を見る 

【ゴリ押し用】cos72°の値と求め方を覚えよ!【語呂合わせ・導出】

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
cos72°の値と求め方解説動画です
-----------------
$\cos 72^{ \circ }=$
$\sin 72^{ \circ }=$
$\cos 18^{ \circ }=$
$\sin 72^{ \circ }=$
この動画を見る 

みんなの説明も聞きたいです...

アイキャッチ画像
単元: #中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
「くくる」についての分かりやすい説明
この動画を見る 

確率:東京都立青山高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#東京都立青山高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京都立青山高等学校

サイズが異なるさいころを同時に1回投げ、
$4 \lt \sqrt{ ab } \lt 5$
となる確率を求めよ。
※さいころA、Bのそれぞれについて、どの目が出ることも同様に確からしい。
この動画を見る 
PAGE TOP