問題文全文(内容文):
5⃣ $F(x)=\int_{\pi - x}^{\pi + x} t sint dt$
$(0 \leqq x \leqq 2\pi)$
F(x)の最小値を求めよ。
5⃣ $F(x)=\int_{\pi - x}^{\pi + x} t sint dt$
$(0 \leqq x \leqq 2\pi)$
F(x)の最小値を求めよ。
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師:
ますただ
問題文全文(内容文):
5⃣ $F(x)=\int_{\pi - x}^{\pi + x} t sint dt$
$(0 \leqq x \leqq 2\pi)$
F(x)の最小値を求めよ。
5⃣ $F(x)=\int_{\pi - x}^{\pi + x} t sint dt$
$(0 \leqq x \leqq 2\pi)$
F(x)の最小値を求めよ。
投稿日:2020.11.09