【数Ⅰ】【図形と計量】余弦定理応用3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】余弦定理応用3 ※問題文は概要欄

問題文全文(内容文):
$\triangle \mathrm{ABC}$において、$a=2,b=\sqrt{6},c=\sqrt{3}-1,A=45 ^\circ$のとき、次の問いに答えよ。
(1) 正弦定理を用いて、$\sin B$ の値を求めよ。
(2) (1)の$\sin B$ の値から、$B$ の候補として$2$ つ考えられるが、そのうち$1$ つは不適である。その理由を説明せよ。
チャプター:

0:00 (1)問題確認中
0:23 (1)sinBを求める
2:18 (2)問題確認中
2:32 (2)3つの角の大小
4:15 Bの候補2つ
5:04 B=60°のとき
6:15 B=120°のとき
7:03 ●°のときが不適!

単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\triangle \mathrm{ABC}$において、$a=2,b=\sqrt{6},c=\sqrt{3}-1,A=45 ^\circ$のとき、次の問いに答えよ。
(1) 正弦定理を用いて、$\sin B$ の値を求めよ。
(2) (1)の$\sin B$ の値から、$B$ の候補として$2$ つ考えられるが、そのうち$1$ つは不適である。その理由を説明せよ。
投稿日:2025.01.31

<関連動画>

因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを因数分解せよ.
$x^5+x+1$
この動画を見る 

【高校数学】不等式の例題~難しいものも解こうよ~ 1-14.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) |$x$| + |$x-2$| $\lt x + 1$

(2)次の連立不等式を満たす整数$x$がちょうど3個存在するような定数$a$の値の
  範囲を求めよ。
  $\begin{eqnarray}
\begin{cases}
5x - 2 \gt 3x …①\\
x-a \lt 0 …②
\end{cases}
\end{eqnarray}$

(3) $ax + a \lt a^2 + x$ 解け。ただし、$a$は定数とする。
この動画を見る 

【高校数学】  数Ⅰ-87  余弦定理

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
△ABCについて
①$a^2=$____
②$b^2=$____
③$c^2=$____
④$\cos A=$____
⑤$\cos B=$____
⑥$\cos C=$____
※図は動画内参照

◎△ABCにおいて、次のものを求めよう。
⑦$a=3,b=\sqrt{ 2 },C=45°$のとき $c$
⑧$b=7,c=5,B=60°$のとき$a$
この動画を見る 

福田の数学〜神戸大学2025理系第2問〜整数部分と小数部分

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$a$に対して、$a$を超えない最大の整数を

$k$とするとき、

$a-k$を$a$の小数部分という。

$n$を自然数とし、$a_n=\sqrt{n^2+1}-n$とおく。

以下の問いに答えよ。

(1)$0\lt a_n \lt 1$が成り立つことを示せ。

(2)$b_n$を$\left(3n-\dfrac{1}{a_n}\right)$の小数部分とする。

$b_n$を$n$を用いて表せ。

(3)$b_n$を(2)で定めるものとする。

$m,n$を異なる$2$つの自然数とするとき、

$a_m+b_n \neq 1$であることを示せ。

$2025$年神戸大学理系過去問題
この動画を見る 

福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。

2023早稲田大学社会科学部過去問
この動画を見る 
PAGE TOP