2024共通テスト数学 あけましておめでとう - 質問解決D.B.(データベース)

2024共通テスト数学 あけましておめでとう

問題文全文(内容文):
整数lを3進数と4進数で表したら、ともに下ケタが012になった
最小のlを求めよ

2024共通テスト過去問
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数lを3進数と4進数で表したら、ともに下ケタが012になった
最小のlを求めよ

2024共通テスト過去問
投稿日:2024.01.14

<関連動画>

【日本最速解答速報】共通テスト2023数学2B 第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 

【高校数学】まだまだ序章~共通テスト数学ⅠA第4問解説~【大学受験】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(2) 次に625²を5⁵で割ったときの余りと2⁵で割ったときの余りについて考えてみよう。
まず、\begin{eqnarray}
625² = 5^ケ
\end{eqnarray}
であり、またm=39 とすると、\begin{eqnarray}
625² = 2^ケm^2+2^コm+1
\end{eqnarray}
である。これらより、625²を5⁵で割ったときの余りと、2⁵で割ったときの余りがわかる。
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
中にくじが入っている箱が複数あり、各箱の外見は同じであるが、当たりくじ
を引く確率は異なっている。くじ引きの結果から、どの箱からくじを引いた可能
性が対価を、条件付き確率を用いて考えよう。

(1)当たりくじを引く確率が$\displaystyle \frac{1}{2}$である箱Aと、当たりくじを引く確率が$\displaystyle \frac{1}{3}$
である箱$B$の二つの箱の場合を考える。

$(\textrm{i})$各箱で、くじを1本引いてはもとに戻す試行を3回繰り返したとき
箱Aにおいて、3回中ちょうど1回当たる確率は$\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$ $\cdots$①
箱Bにおいて、3回中ちょうど1回当たる確率は$\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$ $\cdots$②
である。

$(\textrm{ii})$まず、AとBのどちらか一方の箱をでたらめに選ぶ。次にその選んだ箱
において、くじを1本引いてはもとに戻す試行を3回繰り返したところ、3
回中ちょうど1回当たった。このとき、箱Aが選ばれる事象をA、箱Bが
選ばれる事象をB、3回中ちょうど1回当たる事象をWとすると
$P(A \cap W)=\displaystyle \frac{1}{2}×\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}, P(B \cap W)=\displaystyle \frac{1}{2}×\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$
である。$P(W)=P(A \cap W)+P(B \cap W)$であるから。3回中ちょうど1
回当たった時、選んだ箱がAである条件付き確率$P_W(A)$は$\displaystyle \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$と
なる。また、条件付き確率は$P_W(B)$は$\displaystyle \frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$となる。
(2)(1)の$P_W(A)$と$P_W(B)$について、次の事実(*)が成り立つ。

事実(*)
$P_W(A)$と$P_W(B)$の$\boxed{\boxed{\ \ ス\ \ }}$は、①の確率と②の確率の$\boxed{\boxed{\ \ ス\ \ }}$
に等しい。

$\boxed{\boxed{\ \ ス\ \ }}$の解答群
⓪和 ①2乗の和 ②3乗の和 ③比 ④積

(3)花子さんと太郎さんは事実(*)について話している。
花子:事実(*)はなぜ成り立つのかな?
太郎:$P_W(A)$と$P_W(B)$を求めるのに必要な$P(A \cap W)$と$P(B \cap W)$
の計算で、①,②の確率に同じ数$\displaystyle \frac{1}{2}$をかけているからだよ。
花子:なるほどね。外見が同じ三つの箱の場合は、同じ数$\displaystyle \frac{1}{3}$をかける
ことになるので、同様のことが成り立ちそうだね。

当たりくじを引く確率が、$\displaystyle \frac{1}{2}$である箱$A$、$\displaystyle \frac{1}{3}$である箱$B$、$\displaystyle \frac{1}{4}$である箱
$C$の三つの箱の場合を考える。まず、$A,B,C$のうちどれか一つの箱
をでたらめに選ぶ。次にその選んだ箱において、くじを1本引いては
もとに戻す試行を3回繰り返したところ、3回中ちょうど1回当たった。
このとき、選んだ箱がAである条件付き確率は$\displaystyle \frac{\boxed{\ \ セソタ\ \ }}{\boxed{\ \ チツテ\ \ }}$となる。

(4)花子:どうやら箱が三つの場合でも、条件付き確率の$\boxed{\boxed{\ \ ス\ \ }}$は各箱で
3回中ちょうど1回当たりくじを引く確率の$\boxed{\boxed{\ \ ス\ \ }}$になっている
みたいだね。
太郎:そうだね。それを利用すると、条件付き確率の値は計算しなくて
も、その大きさを比較することができるね。

当たりくじを引く確率が、$\displaystyle \frac{1}{2}$である箱$A$、$\displaystyle \frac{1}{3}$である箱$B$、$\displaystyle \frac{1}{4}$である箱
$C$、$\displaystyle \frac{1}{5}$である箱$D$の四つの箱の場合を考える。まず、$A,B,C,D$のうち
どれか一つの箱をでたらめに選ぶ。次にその選んだ箱において、くじを
1本引いてはもとに戻す試行を3回繰り返したところ、3回中ちょうど
1回当たった。このとき、条件付き確率を用いて、どの箱からくじを
引いた可能性が高いかを考える。可能性が高い方から順に並べると
$\boxed{\boxed{\ \ ト\ \ }}$となる。
$\boxed{\boxed{\ \ ト\ \ }}$の解答群
⓪$A,B,C,D$
①$A,B,D,C$
②$A,C,B,D$
③$A,C,D,B$
④$A,D,B,C$
⑤$B,A,C,D$
⑥$B,A,D,C$
⑦$B,C,A,D$
⑧$B,C,D,A$

2021共通テスト過去問
この動画を見る 

【共通テスト】数学IA 第3問確率がめっちゃ簡単になる本質テクニック、教えます(2023年本試)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第3問確率が簡単になるテクニック、解説動画です

球が4つある。
赤、青、黄、緑、紫のうちいずれか1色でそれぞれ塗る。
1本の紐で繋がれた2つの球は異なる色。
赤をちょうど2回使う塗り方は何通り?
この動画を見る 

【解答速報・全問解説】2025年 大学入学共通テスト 数学ⅡBC解答速報

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2025年1月19日(日)に実施された、2025年大学入学共通テストの数学ⅡBCの解答速報です。(LIVEで行った解答速報の抜粋版です)
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。

指導講師:AKIYAMA、理数大明神、烈's study!、ゆう☆たろう
この動画を見る 
PAGE TOP