2024共通テスト数学 あけましておめでとう - 質問解決D.B.(データベース)

2024共通テスト数学 あけましておめでとう

問題文全文(内容文):
整数lを3進数と4進数で表したら、ともに下ケタが012になった
最小のlを求めよ
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数lを3進数と4進数で表したら、ともに下ケタが012になった
最小のlを求めよ
投稿日:2024.01.14

<関連動画>

2024共通テスト数学 あけましておめでとう

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数lを3進数と4進数で表したら下3桁が共に012になった
最小のlを求めよ
この動画を見る 

【数A】図形の性質:高3 5月全統共通テスト 数学IA第5問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、AB=3,AC=6,∠BAC=90°であるとき、BC=(ア)√(イ)である。Aを中心とし、Bを通る円をKとし、円Kと直線ACの交点のうち辺AC上にある方をD、もう一方をEとする。また、円Kと直線BCの交点でBと異なるものをFとする。このとき、CE=(ウ)であり、方べきの定理を用いると、CF=(エ)√(オ)/(カ)とわかるからBF/FC=(キ)/(ク)である。さらに、直線EFと辺ABの交点をP、直線EFと線分BCの交点をQとすると、BQ/QD=(ケ)であり、△BFQの面積は(コ)/(サシ)である。また、△CPQの面積は(ス)/(セ)である。
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[1]。2次方程式の解に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [1]cを正の定数とする。xの2次方程式\\
2x^2+(4c-3)x+2c^2-c-11=0 \ldots①\\
について考える。\\
(1)c=1のとき、①の左辺を因数分解すると(\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ })(x-\boxed{\ \ ウ\ \ })であるから、\\
①の解はx=-\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ア\ \ }}, \boxed{\ \ ウ\ \ }である。\\
\\
\\
(2)c=2のとき、①の解はx=\frac{-\ \boxed{\ \ エ\ \ }±\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キ\ \ }} であり、大きい方の解を\alphaとすると\\
\frac{5}{\alpha}=\frac{\boxed{\ \ ク\ \ }+\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サ\ \ }}である。また、m \lt \frac{5}{\alpha} \lt m+1を満たす整数mは\boxed{\ \ シ\ \ }である。\\
\\
\\
(3)太郎さんと花子さんは、①の解について考察している。\\
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数\\
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。\\
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。   \\
\\
①の解が異なる2つの有理数であるような正の整数cの個数は\boxed{\ \ ス\ \ }個である。
\end{eqnarray}
この動画を見る 

2024年共通テスト徹底解説〜数学ⅡB第4問数列〜福田の入試問題解説

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第4問数列を徹底解説します
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題5。ベクトルの問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
平面上の点Oを中心とする半径1の円周上に、3点A,B,Cがあり、\\
\overrightarrow{ OA }・\overrightarrow{ OB }=-\frac{2}{3}および\overrightarrow{ OC }=-\overrightarrow{ OA }を満たすとする。tを0 \lt t \lt 1を満たす\\
実数とし、線分ABをt:(1-t)に内分する点をPとする。\\
また、直線OP上に点Qをとる。\\
\\
(1)\cos\angle AOB=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }} である。\\
また、実数kを用いて、\overrightarrow{ OQ }=k\overrightarrow{ OP }と表せる。したがって\\
\overrightarrow{ OQ }=\boxed{\ \ エ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ オ\ \ }\ \overrightarrow{ OB }  \ldots\ldots\ldots\ldots①\\
\overrightarrow{ CQ }=\boxed{\ \ カ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ キ\ \ }\ \overrightarrow{ OB }\\
となる。\\
\overrightarrow{ OA }と\overrightarrow{ OP }が垂直となるのは、t=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }} のときである。\\
\\
\\
\boxed{\ \ エ\ \ } ~ \boxed{\ \ キ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪kt  ①(k-kt)  ②(kt+1)\\
③(kt-1)  ④(k-kt+1)  ⑤(k-kt-1)\\
\\
以下、t ≠\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}とし、\angle OCQが直角であるとする。\\
\\
(2)\angle OCQが直角であることにより、(1)のkは\\
k=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }\ t-\boxed{\ \ シ\ \ }} \ldots②\\
となることがわかる。\\
\\
平面から直線OAを除いた部分は、直線OAを境に二つの部分に分けられる。\\
そのうち、点Bを含む部分をD_1、含まない部分をD_2とする。また、平面\\
から直線OBを除いた部分は、直線OBを境に二つの部分に分けられる。\\
そのうち、点Aを含む部分をE_1、含まない部分をE_2とする。\\
・0 \lt t \lt \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}ならば、点Qは\boxed{\ \ ス\ \ }。\\
・\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }} \lt t \lt 1ならば、点Qは\boxed{\ \ セ\ \ }。\\
\\
\\
\boxed{\ \ ス\ \ }、\boxed{\ \ セ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪D_1に含まれ、かつE_1に含まれる\\
①D_1に含まれ、かつE_2に含まれる\\
②D_2に含まれ、かつE_1に含まれる\\
③D_2に含まれ、かつE_2に含まれる\\
\\
\\
(3)太郎さんと花子さんは、点Pの位置と|\overrightarrow{ OQ }|の関係について考えている。\\
t=\frac{1}{2}のとき、①と②により、|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}とわかる。\\
\\
太郎:t≠\frac{1}{2}のときにも、|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}となる場合があるかな。\\
花子:|\overrightarrow{ OQ }|をtを用いて表して、|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}\\
を満たすtの値について考えればいいと思うよ。\\
太郎:計算が大変そうだね。\\
花子:直線OAに関して、t=\frac{1}{2}のときの点Qと対称な点をRとしたら\\
|\overrightarrow{ OR }|=\sqrt{\boxed{\ \ ソ\ \ }}となるよ。\\
太郎:\overrightarrow{ OR }を\overrightarrow{ OA }と\overrightarrow{ OB }を用いて表すことができれば、\\
tの値が求められそうだね。\\
\\
\\
直線OAに関して、t=\frac{1}{2}のときの点Qと対称な点をRとすると\\
\overrightarrow{ CR }=\boxed{\ \ タ\ \ }\ \overrightarrow{ CQ }\\
=\boxed{\ \ チ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ ツ\ \ }\ \overrightarrow{ OB }\\
となる。\\
t≠\frac{1}{2}のとき、|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}となるtの値は\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}である。
\end{eqnarray}
この動画を見る 
PAGE TOP