【数検準2級】高校数学:数学検定準2級2次:問7 - 質問解決D.B.(データベース)

【数検準2級】高校数学:数学検定準2級2次:問7

問題文全文(内容文):
問7. 次の問いに答えなさい。
(10) さきこさんとゆうたさんは、次のような数当てゲームをしています。
 ① さきこさんは、4桁の数を決めて紙に書く。ただし、どの位の数字も異なり、0は含まないものとする。
 ② ゆうたさんは、さきこさんが書いた4桁の数を予想して伝える。
 ③ さきこさんは、ゆうたさんが予想した4桁の数で、位と数字も当たっている数字の個数と、位は違うが数字が当たっている数字の
   個数をヒントとして伝える。
 ④ ゆうたさんは、さきこさんのヒントをもとに、再び数を予想する。
 ゆうたさんは6回めの予想で、さきこさんが書いた4桁の数を当てました。下の表は、ゆうたさんが5回めまでに予想した数を、それに対するさきこ
さんのヒントです。
 このとき、さきこさんが書いた4桁の数を求めなさい。この問題は答えだけを書いてください。
チャプター:

0:00 問題7について
2:56 (10)の解説
7:28 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定準2級#その他#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問7. 次の問いに答えなさい。
(10) さきこさんとゆうたさんは、次のような数当てゲームをしています。
 ① さきこさんは、4桁の数を決めて紙に書く。ただし、どの位の数字も異なり、0は含まないものとする。
 ② ゆうたさんは、さきこさんが書いた4桁の数を予想して伝える。
 ③ さきこさんは、ゆうたさんが予想した4桁の数で、位と数字も当たっている数字の個数と、位は違うが数字が当たっている数字の
   個数をヒントとして伝える。
 ④ ゆうたさんは、さきこさんのヒントをもとに、再び数を予想する。
 ゆうたさんは6回めの予想で、さきこさんが書いた4桁の数を当てました。下の表は、ゆうたさんが5回めまでに予想した数を、それに対するさきこ
さんのヒントです。
 このとき、さきこさんが書いた4桁の数を求めなさい。この問題は答えだけを書いてください。
投稿日:2023.05.22

<関連動画>

練習問題46 岡山大学 対数の性質を利用した不等式の証明 数検準1級 教員採用試験

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#指数関数と対数関数#対数関数#微分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#数学(高校生)#岡山大学#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
実数$a,b,$は
$0 \lt a \lt b$をみたしているとき
$(b+1)^a \lt (a+1)^b$が成り立つことを表せ。

出典:岡山大学
この動画を見る 

#数検準1級1次過去問#定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{e^2-1} log(x+1)$ $dx$

出典:数検準1級1次
この動画を見る 

#38 数検1級1次 過去問 解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$z^3+2z^2+2z+1=0$の3つの解を$\alpha,\beta,\gamma$とする
$\alpha^{2019}+\beta^{2019}+\gamma^{2019}$の値を求めよ。
この動画を見る 

重積分⑦-3【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$∬_D \frac{x}{y \sqrt{1+x^2+y^2}}dxdy$
$D: 0 \leqq x \leqq y $ , $\frac{1}{2} \leqq x^2+y^2 \leqq 1$
この動画を見る 

数検準1級1次過去問(3番 ベクトル)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#平面上のベクトルと内積#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
3⃣
$|\vec{ a }|=\sqrt{10}$ , $|\vec{ b }|=\sqrt{5}$ , $\vec{ a }・\vec{ b } = -\sqrt{2}$
$ \vec{ a }⊥(\vec{ a }+t\vec{ b })$
のとき$|\vec{ a }+t\vec{ b }|$を求めよ。
この動画を見る 
PAGE TOP