兵庫県立大 不等式の証明 - 質問解決D.B.(データベース)

兵庫県立大 不等式の証明

問題文全文(内容文):
2022兵庫県立大学過去問題
$a \geqq 0$,$b \geqq 0$,$c \geqq 0$のとき
$\frac{a+b+c}{3} \geqq \sqrt\frac{ab+bc+ca}{3}$
単元: #兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022兵庫県立大学過去問題
$a \geqq 0$,$b \geqq 0$,$c \geqq 0$のとき
$\frac{a+b+c}{3} \geqq \sqrt\frac{ab+bc+ca}{3}$
投稿日:2023.09.09

<関連動画>

大学入試問題#415「解法は何通りかありそう・・・」 兵庫県立大学2022 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\displaystyle \frac{\sin3x}{\sin2x})^2 dx$

出典:2022年兵庫県立大学 入試問題
この動画を見る 

大学入試問題#804「このタイプは定期的に出題」 #兵庫県立大学中期(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=2\sin2x-\sin\ x$とする。
定積分$\displaystyle \int_{0}^{\pi} |f(x)| dx$の値を求めよ。

出典:2014年兵庫県立大学中期 入試問題
この動画を見る 

三項間漸化式 兵庫県立大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$
$a_{n+2}-4a_{n+1}+4a_n=1$
一般項を求めよ.

兵庫県立大過去問
この動画を見る 

大学入試問題#798「微分方程式の基礎トレーニング」 横浜国立大学(2024) #微分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: ますただ
問題文全文(内容文):
実数全体で定義された連続関数$f(x)$が、すべての実数$x$に対して$f(x) \gt 0,$かつ
$f(x)=\displaystyle \int_{0}^{ x } \displaystyle \frac{t}{(t^2+1)f(t)} dt+1$を満たすとき、$f(x)$を求めよ。

出典:2024年横浜国立大学
この動画を見る 

兵庫県立大 複素数の掛け算

アイキャッチ画像
単元: #兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022兵庫県立大学過去問題
a,b,c,dは整数
$a \geqq 0$,$a \geqq c$,$b \geqq d$
$(a+b\sqrt{5}i)(c+d\sqrt{5}i)=6$

①$(a^{2}+5b^{2})(c^{2}+5d^{2})=36$を示せ
②(a,b,c,d)の組をすべて求めよ
この動画を見る 
PAGE TOP