問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角形の形状決定(1)\\
次の等式が成り立つとき、\triangle ABCはどんな三角形か。\\
\\
a^2+b^2+c^2=bc(\frac{1}{2}+\cos A)+ca(\frac{1}{2}+\cos B)+ab(\frac{1}{2}+\cos C)
\end{eqnarray}
\begin{eqnarray}
数学\textrm{I} 三角形の形状決定(1)\\
次の等式が成り立つとき、\triangle ABCはどんな三角形か。\\
\\
a^2+b^2+c^2=bc(\frac{1}{2}+\cos A)+ca(\frac{1}{2}+\cos B)+ab(\frac{1}{2}+\cos C)
\end{eqnarray}
単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角形の形状決定(1)\\
次の等式が成り立つとき、\triangle ABCはどんな三角形か。\\
\\
a^2+b^2+c^2=bc(\frac{1}{2}+\cos A)+ca(\frac{1}{2}+\cos B)+ab(\frac{1}{2}+\cos C)
\end{eqnarray}
\begin{eqnarray}
数学\textrm{I} 三角形の形状決定(1)\\
次の等式が成り立つとき、\triangle ABCはどんな三角形か。\\
\\
a^2+b^2+c^2=bc(\frac{1}{2}+\cos A)+ca(\frac{1}{2}+\cos B)+ab(\frac{1}{2}+\cos C)
\end{eqnarray}
投稿日:2021.09.24