大学入試問題#33 浜松医科大学(2020) 漸化式と級数 - 質問解決D.B.(データベース)

大学入試問題#33 浜松医科大学(2020) 漸化式と級数

問題文全文(内容文):
数列$\{a_n\}$を
$a_1=1,\ 3a_{n+1}=a_n+\displaystyle \frac{1}{2^{n+1}}$で定める。
(1)一般項$a_n$を求めよ。
(2)$\displaystyle \sum_{n=1}^\infty\ n\ a_n$の収束、発散を調べよ。
収束するときはその和を求めよ。

出典:2020年浜松医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
数列$\{a_n\}$を
$a_1=1,\ 3a_{n+1}=a_n+\displaystyle \frac{1}{2^{n+1}}$で定める。
(1)一般項$a_n$を求めよ。
(2)$\displaystyle \sum_{n=1}^\infty\ n\ a_n$の収束、発散を調べよ。
収束するときはその和を求めよ。

出典:2020年浜松医科大学 入試問題
投稿日:2021.10.13

<関連動画>

福田の数学〜慶應義塾大学2023年理工学部第1問(2)〜微分可能性

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)$g(x)$=$|x|\sqrt{x^2+1}$とする。$g(x)$が$x$=0で微分可能でないことを証明しなさい。
この動画を見る 

福田の数学〜早稲田大学2024商学部第1問(3)〜漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$C$を$1$でない正の実数とする。正の実数の数列$\{a_n\}$が次の条件を満たしている。
$a_1=C,$${a_n}^{n+1}{a_{n+1}}^n=C^{-(2n+1)}$
このとき、一般項$a_n$を$C$を用いて表せ。
この動画を見る 

大学入試問題#545「作成時間がありませんでした」 会津大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (2x+1)log(x+1)\ dx$

出典:2023年会津大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2024年人間科学部第7問〜内サイクロイド曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ $n$を2以上の自然数とする。座標平面において、原点を中心とする半径$n$の円$C_n$の内側を半径1の円$C$が滑らずに転がるとき、円$C$上の定点Pの軌跡について考える。時刻$t$において、2つの円$C$と$C_n$は点($n\cos t$, $n\sin t$)で接している。
また、時刻$t$=0 において、点Pは点($n$, 0)にある。$t$が0≦$t$≦$\displaystyle\frac{2\pi}{n}$ の範囲を動くとき、点Pの軌跡の長さを$L_n$とする。このとき、$L_2$=$\boxed{\ \ テ\ \ }$である。また、$\displaystyle\lim_{n \to \infty}L_n$=$\boxed{\ \ ト\ \ }$である。
この動画を見る 

京都大 微分(超基本問題)高校数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2011京都大学過去問題
実数aが変化するとき、3次関数$y= x^3-4x^2+6x$、直線$y=x+a$のグラフの交点の個数はどのように変化するか。
aの値によって分類せよ。
この動画を見る 
PAGE TOP