図形と計量 正弦定理と余弦定理の応用、測量の考え方【烈's study!がていねいに解説】 - 質問解決D.B.(データベース)

図形と計量 正弦定理と余弦定理の応用、測量の考え方【烈's study!がていねいに解説】

問題文全文(内容文):
2地点P、Q間の距離を求めるために、1つの直線上にある3地点A、B、Cをとったら、$AB=400m、BC=100\sqrt3 m,\angle QAB=30°,\angle PBA=\angle QBC=75°,\angle PCB=45°$であった。P、Q間の距離を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:20 アプローチ
1:09 解説(ADの長さ)
3:19 解説(AMの長さ)
4:32 エンディング

単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2地点P、Q間の距離を求めるために、1つの直線上にある3地点A、B、Cをとったら、$AB=400m、BC=100\sqrt3 m,\angle QAB=30°,\angle PBA=\angle QBC=75°,\angle PCB=45°$であった。P、Q間の距離を求めよ。
投稿日:2023.04.20

<関連動画>

ただ二重根号を外すだけ

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{2065+180\sqrt{10}}$
これを求めよ.
この動画を見る 

ルートの計算!!2通りで解説

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{54^2-48^2-6^2}$
この動画を見る 

【短時間でマスター!!】入試、模試や定期テストでとてもよく出る三角比の対称式を解説!(sin,cos,tanの求め方)〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
三角比の対称式
$0^{ \circ } \leqq \theta \leqq 180^{ \circ } ,\sin \theta + \cos \theta = \frac {2}{3}$
①$\sin \theta \cos \theta$
②$\sin^3 \theta + \cos^3 \theta$
この動画を見る 

二乗せよ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察4(受験編)

アイキャッチ画像
単元: #中1数学#方程式#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}\ n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$\ a_1,a_2,\cdots,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n}$$ \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 
PAGE TOP