問題文全文(内容文):
$\Large\boxed{3}$ 座標空間の4点O,A,B,Cは同一平面上にないとする。線分OAの中点をP、線分ABの中点をQとする。実数$x$,$y$に対して、直線OC上の点Xと、直線BC上の点Yを次のように定める。
$\overrightarrow{\textrm{OX}}$=$x\overrightarrow{\textrm{OC}}$, $\overrightarrow{\textrm{BY}}$=$y\overrightarrow{\textrm{BC}}$
このとき、直線QYと直線PXがねじれの位置にあるための$x$,$y$に関する必要十分条件を求めよ。
$\Large\boxed{3}$ 座標空間の4点O,A,B,Cは同一平面上にないとする。線分OAの中点をP、線分ABの中点をQとする。実数$x$,$y$に対して、直線OC上の点Xと、直線BC上の点Yを次のように定める。
$\overrightarrow{\textrm{OX}}$=$x\overrightarrow{\textrm{OC}}$, $\overrightarrow{\textrm{BY}}$=$y\overrightarrow{\textrm{BC}}$
このとき、直線QYと直線PXがねじれの位置にあるための$x$,$y$に関する必要十分条件を求めよ。
単元:
#計算と数の性質#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標空間の4点O,A,B,Cは同一平面上にないとする。線分OAの中点をP、線分ABの中点をQとする。実数$x$,$y$に対して、直線OC上の点Xと、直線BC上の点Yを次のように定める。
$\overrightarrow{\textrm{OX}}$=$x\overrightarrow{\textrm{OC}}$, $\overrightarrow{\textrm{BY}}$=$y\overrightarrow{\textrm{BC}}$
このとき、直線QYと直線PXがねじれの位置にあるための$x$,$y$に関する必要十分条件を求めよ。
$\Large\boxed{3}$ 座標空間の4点O,A,B,Cは同一平面上にないとする。線分OAの中点をP、線分ABの中点をQとする。実数$x$,$y$に対して、直線OC上の点Xと、直線BC上の点Yを次のように定める。
$\overrightarrow{\textrm{OX}}$=$x\overrightarrow{\textrm{OC}}$, $\overrightarrow{\textrm{BY}}$=$y\overrightarrow{\textrm{BC}}$
このとき、直線QYと直線PXがねじれの位置にあるための$x$,$y$に関する必要十分条件を求めよ。
投稿日:2024.03.08





