【高校受験対策/数学】関数56 - 質問解決D.B.(データベース)

【高校受験対策/数学】関数56

問題文全文(内容文):
高校受験対策・関数56

Q.
図のように、円の中心$O$と点$P$が直線$l$上にあり、円の$O$半径は10$cm$、$OP$間の距離は20$cm$である。
点$O$が固定されたまま、点$P$は毎秒3$cm$の速さで直線$l$上を図の矢印の向きに進み、出発してから10秒後に停止する。
点$P$が出発してから$x$秒後の$OP$間の距離を$y cm$として次の問いに答えなさい。

①点$P$が出発してから点$O$と重なるまでの間について、$y$を$x$の式で表しなさい。

②点$P$が点$O$と重なってから停止するまでの間について、$y$を$x$の式で表しなさい。

③点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。

④点$P$が出来するのと同時に、毎秒1$cm$の一定の割合で円の半径が小さくなり始め、点$P$が停止するまでの間、円$O$は中心が固定されたまま徐々に小さくなっていくものとする。
点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数56

Q.
図のように、円の中心$O$と点$P$が直線$l$上にあり、円の$O$半径は10$cm$、$OP$間の距離は20$cm$である。
点$O$が固定されたまま、点$P$は毎秒3$cm$の速さで直線$l$上を図の矢印の向きに進み、出発してから10秒後に停止する。
点$P$が出発してから$x$秒後の$OP$間の距離を$y cm$として次の問いに答えなさい。

①点$P$が出発してから点$O$と重なるまでの間について、$y$を$x$の式で表しなさい。

②点$P$が点$O$と重なってから停止するまでの間について、$y$を$x$の式で表しなさい。

③点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。

④点$P$が出来するのと同時に、毎秒1$cm$の一定の割合で円の半径が小さくなり始め、点$P$が停止するまでの間、円$O$は中心が固定されたまま徐々に小さくなっていくものとする。
点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。
投稿日:2021.10.22

<関連動画>

【これも連立方程式?】3元1次連立方程式③:中学からの連立方程式~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式
$ x+y=3...①$
$ y+z=5...②$
$ z+x=4...③$ を解け.

この動画を見る 

【挑戦しよう!】連立方程式:慶応義塾高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x \gt y $において,
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y+xy^2-9xy=120 \\
xy+x+y-9=-22
\end{array}
\right.
\end{eqnarray}$

の解は$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$ または,$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$

慶應義塾高校過去問
この動画を見る 

【ルーチン】連立方程式の解き方《後編》~【行列のできる】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
【ルーチン】連立方程式の解き方《後編》

$\begin{eqnarray}
\left\{
\begin{array}{l}
ax + by = l \\
cx + dy = m
\end{array}
\right.
\end{eqnarray}$

$ \iff $ $ \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} $$\dbinom{ x }{ y }=\dbinom{ l }{ m }$
この動画を見る 

【高校受験対策】数学-規則性5

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
ます目が書いてあるボード上で,次の規則にしたがって,円形のコマを進める.

<規則>
①最初に,図1のようにボードの左下のます目にコマをおく.
②さいころを1回振って出た目の数が奇数ならば上方向に,
偶数ならば右方向に出た目の数だけコマを進める.
ただし,コマがます目の端まで進めば,それまでとは反対方向にコマを進める.
③続けて2回目のさいころを振るとき,
コマが1回目に進んだ位置から②の規則にしたがってコマを進め,
コマが2回目に進んだ位置をコマが止まるます目とする.

(1)さいころを2回振って,$5→6$の順に目が出た.
$4\times 4$のます目の中で,コマが止まるます目に○印を記入しなさい.

(2)さいころを2回振って,$4\times 4$のます目のボード上でコマを進めたとき,
コマが止まるます目は全部で何個あるか求めなさい.

(3) さいころを2回振って,$5\times 5$のます目(図2)のボード上で,
規則にしたがってコマを進めたとき,
コマが止まるます目は全部で何個あるか求めなさい.

図は動画内参照
この動画を見る 

確率:東京都立青山高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#東京都立青山高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京都立青山高等学校

サイズが異なるさいころを同時に1回投げ、
$4 \lt \sqrt{ ab } \lt 5$
となる確率を求めよ。
※さいころA、Bのそれぞれについて、どの目が出ることも同様に確からしい。
この動画を見る 
PAGE TOP