【「分かったつもり」が命取り!】文字式:大阪星光学院高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【「分かったつもり」が命取り!】文字式:大阪星光学院高等学校~全国入試問題解法

問題文全文(内容文):
$6-\sqrt5$の整数部分を$a$とし,小数部分を$b$とする.
このとき,$a^2+b^2-3b+1=\Box$である.$\Box$の値を求めよ.

大阪星光学院高等学校過去問
単元: #数学(中学生)#中1数学#文字と式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$6-\sqrt5$の整数部分を$a$とし,小数部分を$b$とする.
このとき,$a^2+b^2-3b+1=\Box$である.$\Box$の値を求めよ.

大阪星光学院高等学校過去問
投稿日:2022.06.11

<関連動画>

【中1 数学】中1-7 正負のかけ算・わり算②

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄を埋め、計算せよ。
ポ乗法と除法だけなら、①___の数を
かぞえると答えの符号が分かるんだ!!

①が偶数個→答えは②____
①が奇数個→答えは③____
◎逆数はいくつ?
④$\displaystyle \frac{2}{5}$→
⑤$\displaystyle \frac{1}{3}$→
⑥$-5$→

◎計算しよう!
⑦$(-\displaystyle \frac{2}{9} \times (-\displaystyle \frac{3}{5})=$
⑧$\displaystyle \frac{4}{15} \div (-\displaystyle \frac{2}{5})=$
⑨$(-36) \times 5 \div (-4)=$
⑩$(-\displaystyle \frac{7}{4}) \div 14 \times \displaystyle \frac{6}{5}=$
⑪$(-\displaystyle \frac{2}{3}) \div (-\displaystyle \frac{8}{5}) \div(-20)=$
⑫$(-4) \times (-5) \div (-10) \times (-3)=$
⑬$0.3 \div (-\displaystyle \frac{7}{3}) \times 21=$

【おまけ】
もし$(-1)$を$777$個かけると答えは⑭____になる。
この動画を見る 

【中学数学】数学用語チェック絵本vol.1正負の数

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 理数個別チャンネル
問題文全文(内容文):
中学1年生 正負の数の用語を総チェック!先生オリジナルキャラクターたちと一緒に覚えていこう!

この動画を見る 

中1数学「加法と減法の混じった計算」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
加法と減法の混じった計算に関して解説していきます。
この動画を見る 

【中学数学】比例と反比例:関数決定マスターへの道 2発目! 反比例編

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 理数個別チャンネル
問題文全文(内容文):
xはyに反比例し、x=3のときy=9となる。yをxの式で表しなさい。
この動画を見る 

高等学校入学試験予想問題:青山学院高等部~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#文章題#文章題その他#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

0から9までの整数が1つずつ書かれた10枚のカードから3枚を選び,並べて3桁の自然数を作る.
ただし,同じカードは1回しか使えないとする.
百の位より十の位,十の位より一の位の数字が大きくなるような3の倍数はいくつできるか.

$ \boxed{2}$

図のように,1辺の長さが2の正方形$ABCD$と,$QR=6,PR=3,\angle PRQ=90°$の$\triangle PQR$がある.
$ \triangle PQR$は辺$QR$が,正方形$ABCD$は辺$BC$がそれぞれ直線$\ell$上にある.
正方形が$ \ell $にそって矢印の方向に毎秒1の速さで動く.
点$C$と点$Q$が一致している時から$t$秒後の正方形と$ \triangle PQR$が重なった部分の面積を$S$とするとき,次の各場合について$S$を$t$で表せ.
(1)$ 0\leqq t\leqq 2 $のときの$S$の値.
(2)$ 2\leqq t\leqq 4$のときの$S$の値.
(3)$ 4\leqq t\leqq 6$のときの$S$の値.

$ \boxed{3}$

図のように,正四角錐$ A-BCDE$があり,辺$AB$の中点を$M$とする.
底面の正方形$BCDE$の対角線$BD$と$CE$の交点を$F$とすると,$AF=8$cmである.
次の問いに答えよ.
(1)底面の正方形$BCDE$の一辺の長さが$9$cmのとき,対角線$BD$の長さは何cmか.
  また,正四角錐$A-BCDE$の体積は何$cm^3$か.
(2)正四角錐$A-BCDE$を3点$M,C,E$を通る平面で2つに切り分ける.
頂点$B$を含む立体の体積を$V1cm^3$,頂点$B$を含まない立体の体積を$V2cm^3$と
  するとき,$V1$と$V2$の体積比を最も簡単な整数比で表せ.
この動画を見る 
PAGE TOP