北海道大学(1970) #定積分 #Shorts - 質問解決D.B.(データベース)

北海道大学(1970) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=0}^{n-1} \displaystyle \frac{1}{\sqrt{ 4n^2-k^2 }}$

出典:1970年北海道大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=0}^{n-1} \displaystyle \frac{1}{\sqrt{ 4n^2-k^2 }}$

出典:1970年北海道大学
投稿日:2024.02.23

<関連動画>

和歌山県立医大 数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#和歌山県立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
和を求めよ
$1・2+1・3+1・4+……+1・n$
  $+2・3+2・4+……+2・n$
     $+3・4+……+3・n$
           ・
           ・
           ・
          $+(n-1)n$

出典:1989年和歌山県立医科大学 過去問
この動画を見る 

高知大学 二次関数 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす

(ア)
ある実数$a$に対して$f(a) \lt 0$

(イ)
任意の整数$n$に対して$f(n) \geqq 0$

$f(x)$を求めよ

出典:高知大学 過去問
この動画を見る 

大学入試問題#44 明治大学(2021) 複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$|z|=2$のとき
$|z^2+iz-1|$のとりうる値の範囲を求めよ。

出典:2021年明治大学 入試問題
この動画を見る 

福田の数学〜浜松医科大学2023年医学部第2問〜定積分と極限とグラフ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
医療で使われる技術の1つとして、磁気共鳴画像法 (MRI) がある。
MRI は画像の濃淡を表す関数、例えば

$M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ (xは実数)

を用いて体内の様子を可視化する技術である。 ここで $I_n(x) $ は

$I_n(x) = \displaystyle \int_0^n e^{ -t }cos(tx)dt $
(n=1, 2, 3, ...)である。以下の問いに答えよ。

(1) 定積分$I_n(x) $を求めよ。

(2) $M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ を求めよ

2023浜松医科大学医過去問


(3) 関数 $y= M(x)$ について、増減、極値、グラフの凹凸および変曲点を調べて、そのグラフをかけ。
この動画を見る 

2022北海道大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-$
$k+1 $
(1)$ f(k-1)$の値を求めよ.
(2)$ \vert k \vert \lt 2$のとき,不等式 $ f(n)\geqq 0$を解け.

2022北海道大過去問
この動画を見る 
PAGE TOP