問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=0}^{n-1} \displaystyle \frac{1}{\sqrt{ 4n^2-k^2 }}$
出典:1970年北海道大学
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=0}^{n-1} \displaystyle \frac{1}{\sqrt{ 4n^2-k^2 }}$
出典:1970年北海道大学
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=0}^{n-1} \displaystyle \frac{1}{\sqrt{ 4n^2-k^2 }}$
出典:1970年北海道大学
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=0}^{n-1} \displaystyle \frac{1}{\sqrt{ 4n^2-k^2 }}$
出典:1970年北海道大学
投稿日:2024.02.23