今年もやります!100問解説。2023高校入試解説1問目 式の値 西大和学園 - 質問解決D.B.(データベース)

今年もやります!100問解説。2023高校入試解説1問目 式の値 西大和学園

問題文全文(内容文):
$x^2 = \frac{\sqrt 5 + \sqrt 2}{\sqrt 3}$ $y^2 = \frac{\sqrt 5 - \sqrt 2}{\sqrt 3}$
$\frac{x^3}{y}$ +$\frac{y^3}{x} -2xy =?$ (x>0,y>0)
2023西大和学園高等学校
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2 = \frac{\sqrt 5 + \sqrt 2}{\sqrt 3}$ $y^2 = \frac{\sqrt 5 - \sqrt 2}{\sqrt 3}$
$\frac{x^3}{y}$ +$\frac{y^3}{x} -2xy =?$ (x>0,y>0)
2023西大和学園高等学校
投稿日:2023.01.08

<関連動画>

【#4】【因数分解100問】基礎から応用まで!(31)〜(40)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(31)$(x^2+5)(x+3)(x-3)$
(32)$(x^2+1)(x+1)(x-1)$
(33)$(a+2b)(a-2b)(2a+3b)(2a-3b)$
(34)$3b^2(3a+2bc)(3a-2bc)$
(35)$\dfrac{1}{4}(2a+b-c)(2a-b+c)$
(36)$(5x+3)(25x^2-15x+9)$
(37)$(2x-3y)(4x^2+6xy+9y^2)$
(38)$(x-2)(x+1)(x-3)(x+2)$
(39)$(x+1)(x+3)(x+2)^2$
(40)$(x-1)^2(x^2-2x-4)$
この動画を見る 

因数分解 中央大附属 2023

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^2b^2 - 2abd -c^2 +d^2$

2023中央大学付属高等学校
この動画を見る 

2021入試予想問題~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2021入試予想問題~全国入試問題解法

次の入試問題を解け。
$2021 = 43 × 47$

①$2025=45^2$であることを
利用して $2021$の約数を求めよ。

②$2025=45^2$であることを
利用して $2021$の約数を求めよ。

③以下の式を計算せよ
$2025^2+2020 \times 2021-4041 \times 2025$

④$2001+2002+2003+....+2021$
を計算せよ。
⑤$a,ℓ$:自然数、$a$を$ℓ$で割った余り$R_{ℓ}(a)$
(1)$R_{40} (2021), R_{40} (2021^2)$を求めよ。
(2)$R_{40} (2021^{2021})$を求めよ。

⑥ある整数$x$を$12$で割ると、
余りろとなりました。
このとき、$x$を$2021$倍した
$2021x$を$12$で割った余りを求めよ。

⑦ $3^{2021}$の一の位の数を求めなさい。
この動画を見る 

【高校受験対策】数学-死守36

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守36

①$5+4 \times 6$を計算せよ

②$\frac{9}{5}\div 0.8-\frac{1}{2}$を計算せよ

③$\sqrt{60}\div \sqrt{5}+\sqrt{27}$を計算せよ

④比例式$3:4=(x-6):8$について$x$の値を求めよ。

⑤$3x^2+9x-12$を因数分解せよ。

⑥$n$を50以下の正の整数とするとき、$\sqrt{5n}$の値が整数となるような$n$の値をすべて求めよ。

⑦次の口と△にどんな自然数を入れても、計算の結果がつねに自然数 になるものはどれか。
下のア~エの中からあてはまるものをすべて答えよ。

ア 口+△
イ 口-△
ウ 口×△
エ 口÷△

⑧大小2つのさいころを同時に投げる。
大きいさいころの出た目の数を$x$座標、小さいさいころの出た目の数を$y$座標とする点を$P(x,y)$とするとき、点$P$が1次関数$y=-x+8$のグラフ上の点となる確率を求めよ。

⑨右の図は半径$rcm$の球を切断して できた半球で、切断面の円周の長さは$4\pi cm$であった。
このとき$r$の値を求めよ。
また、この半球の体積は何$cm^3$か。 ただし$\pi$は円周率とする。
この動画を見る 

二次方程式 〇るな  二松学舎大付属(東京)

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#2次方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$(x-2)^2=x-2$

二松学舎大学附属高等学校
この動画を見る 
PAGE TOP