確率×整数問題!さいころの目の最小公倍数や最大公約数【数学 入試問題】【北海道大学】 - 質問解決D.B.(データベース)

確率×整数問題!さいころの目の最小公倍数や最大公約数【数学 入試問題】【北海道大学】

問題文全文(内容文):
$n$を2以上の自然数とする。1個のさいころを続けて$n$回投げる試行を行い,出た目を順に$X_1,X_2,・・・,X_n$とする。

(1)$X_1,X_2,・・・,X_n$の最大公約数が3となる確率を$n$の式で表せ。

北海道大過去問
単元: #数Ⅰ#数A#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の自然数とする。1個のさいころを続けて$n$回投げる試行を行い,出た目を順に$X_1,X_2,・・・,X_n$とする。

(1)$X_1,X_2,・・・,X_n$の最大公約数が3となる確率を$n$の式で表せ。

北海道大過去問
投稿日:2022.07.13

<関連動画>

図形と計量 平行四辺形の面積を求める【烈's study!がていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような平行四辺形ABCDの面積を求めよ。
(1)$AB=3、BC=5、\angle ABC=60°$
(2)$AB=4、AD=6、\angle ABC=135°$
この動画を見る 

消えるのが気持ち良い

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a+b=5$
$a^3+15ab+b^3=?$
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 6発目!『-は消しちゃおう編』 3x -2y=5をy=の形にしましょう。

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3x -2y=5をy=の形にせよ.
この動画を見る 

センター試験レベル 広島県立大 三次式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#センター試験#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+px+q=0$は2つの実数解$\alpha,\beta(\alpha \neq \beta)$をもつ。
$f(x)=x^3-9x+6$とすると$f(\alpha)=\beta,f(\beta)=\alpha$を満たす。
$p,q$を求めよ。

出典:1998年県立広島大学 過去問
この動画を見る 

数と式 真偽の調べ方【いつものシミズ君がていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bは実数とする。次の命題の真偽を求めよ。
(1)$ab=0$ならば$a^2+b^2=0$である。
(2)$a^2=4$ならば$\vert a+1\vert \geqq 1$である。
(3)$ab$が有理数であるならば、a、bはともに有理数である。
(4)$a+b、ab$がともに有理数ならば、a、bはともに有理数である。

全体集合を$U$とし、条件$p、q$を満たす全体の集合を、それぞれ$P.Q$とする。
命題$p$(補集合)⇒$q$が真であるとき、$P、Q$について常に成り立つ事をすべて選べ。

①$P=Q$
②$Q⊂P$
③$Q$(補集合)$⊂P$
④$P⊂Q$(補集合)
⑤$P∪Q$(補集合)$=P$
⑥$P∪Q$(補集合)$=Q$(補集合)
⑦$P∩Q=∅$
⑧$P∪Q=U$
この動画を見る 
PAGE TOP