【算数練習】138(”大人”は頭の体操) - 質問解決D.B.(データベース)

【算数練習】138(”大人”は頭の体操)

問題文全文(内容文):
四角形CGHF=10$cm^2$
辺AE=辺BE
辺CG=辺DG
*図は動画内参照
平行四辺形ABCDの面積は?
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: 算数・数学ちゃんねる
問題文全文(内容文):
四角形CGHF=10$cm^2$
辺AE=辺BE
辺CG=辺DG
*図は動画内参照
平行四辺形ABCDの面積は?
投稿日:2024.11.23

<関連動画>

【受験算数】直方体ABCD-EFGHをACFを通る平面とBDGを通る平面て切断した時にできるBを含む立体の体積を求めなさい

アイキャッチ画像
単元: #算数(中学受験)#立体図形#立体切断
教材: #予習シ#予習シ算数・小5下#中学受験教材#立方体・直方体の切断
指導講師: 理数個別チャンネル
問題文全文(内容文):
直方体ABCD-EFGHをACFを通る平面とBDGを通る平面て切断した時にできるBを含む立体の体積を求めなさい【予習シリーズ】【立体図形】
この動画を見る 

【受験算数】拡大・縮小:⑦平行線と相似4

アイキャッチ画像
単元: #算数(中学受験)#平面図形#相似と相似を利用した問題
教材: #SPX#中学受験教材#6年算数D-支援
指導講師: 受験算数の森
問題文全文(内容文):
大問1
右の図の三角形ABCにおいて、AB=12cm, AC=10cmです。AB、AC上に点D、Eをそれぞれ AD=7.5cm、AE=6cmとなるようにとり、EからCDに平行な線を引き、ABとの交点をGとし、 BEとCDの交点をFとします。次の問いに答えなさい。
(1) DGの長さを求めなさい。
(2) 三角形BCFの面積は、三角形CEFの面積 の何倍ですか。
(3) 三角形ABCの面積は、三角形CEFの面積の何倍ですか。

大問2
右の図の三角形ABCにおいて、AB=10cm, AC=8です。AB、AC上に点D、Eをそれぞれ AD=6.4cm、 AE=5cmとなるようにとり、EからCDに平行な線を引き、ABとの交点をGとし、 BEとCDの交点をFとします。次の問いに答えなさい。
(1) DGの長さを求めなさい。
(2) 三角形BCFの面積は、三角形CEFの面積 の何倍ですか。
(3) 三角形ABCの面積は、三角形CEFの面積の何倍ですか。
この動画を見る 

15°の角を持つ直角三角形の面積の求め方

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: 重吉
問題文全文(内容文):
動画内の図を参照し、面積を求めよ
二等辺三角形の面積は〇cm²
直角三角形の面積は〇cm²
この動画を見る 

定番過ぎる!解法テクニックがギュッと詰まった問題!補助線の場所がすぐに思いつく?【中学受験算数】【入試問題】【洗足学園中学校】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#洗足学園中学
指導講師: こばちゃん塾
問題文全文(内容文):
・左図で、lとmが平行でABとACの長さが等しく、㋑が㋐の3倍の大きさの角度のとき、㋒は何度?

・左図の正六角形ABCDEFにおいて、角xは何度?

・左図のようなABを直径とする円があります。斜線部は何㎠?

*図は動画内参照
この動画を見る 

【高校受験対策】数学-死守19

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#比例・反比例#確率#文章題#文章題その他#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$8-(-13)$を計算しなさい.

②$(- 3) ^ 2 + \left(-\dfrac{1}{3}\right)\times 6$ を計算しなさい.

③$(7a - 4b) + \dfrac{1}{2}(2b - 6a)$ を計算しなさい.

④方程式$ 0.2(x - 2) = x + 1.2$ を解きなさい.

⑤$\sqrt{48}-\sqrt{27}+5\sqrt3$を計算しなさい.

⑥二次方程式$x ^ 2 + 7x + 5 = 0 $を解きなさい.

⑦$y$は$x$の2乗に比例し,
$ x = 2 $のとき,$y=1$である.
$y$を$x$の式で表しなさい.

⑧右の資料は,ある生徒が受けた第1回から第6回までの数学のテストの得点の記録のうち,
第1回から第5回までの得点の記録である.
第1回から第6回までの得点の中央値が80点となるとき,
第6回のテストの得点を求めなさい.

$\boxed{83 \quad 78\quad 74\quad 77 \quad 96}$ (単位:点)

⑨$m$と$n$は連続する正の整数である.
次のア~エのうちから,次の値が偶数となるものを一つ選び,
符号で答えなさい.ただし,$m \lt n$とする.

ア.$m+n$
イ.$n-m$
ウ.m + n + 2$
エ.$mn$

⑩箱の中に同じ大きさの白い球だけがたくさん入っている.
この白い球が何個あるか,標本調査を行って推測しょうと考えた.
そこでオレンジ色の球200個を箱に入れてよくかき混ぜ,
そこから50個を無作為に抽出したところ,
オレンジ色の球が4個含まれていた.
はじめに箱の中に入っていた白い球の個数を推測しなさい

①箱の中に$②,③,④,⑥,⑧,⑨$のカードがそれぞれ1枚ずつ入っている.
この箱から同時に2枚取り出すとき,
取り出した2枚のカードに書かれた数の最小公倍数が,
1桁の数になる確率を求めなさい.
ただし,どのカードの取り出し方も同様に確からしいものとする.
この動画を見る 
PAGE TOP