数学「大学入試良問集」【14−10空間ベクトルと正四面体】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−10空間ベクトルと正四面体】を宇宙一わかりやすく

問題文全文(内容文):
各辺の長さが1の正四面体OABCに対し、OB2:1に内分する点をD,OCを2等分する点をE,BCを2等分にする点をFとする。
DEOFの交点をGとするとき、以下の各問いに答えよ。
(1)OGの長さを求めよ。
(2)AGの長さを求めよ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
各辺の長さが1の正四面体OABCに対し、OB2:1に内分する点をD,OCを2等分する点をE,BCを2等分にする点をFとする。
DEOFの交点をGとするとき、以下の各問いに答えよ。
(1)OGの長さを求めよ。
(2)AGの長さを求めよ。
投稿日:2021.10.21

<関連動画>

【数B】空間ベクトル:ベクトルの最小値を求める!!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)原点Oと2点A(-1, 2, -3)、B(-3, 2, 1)に対して、p=(1-t)OA+tOBとする。|p|の最小値とそのときの実数tの値を求めよ。
(2)定点A(-1, -2, 1)、B(5, -1, 3)とzx平面上の動点Pに対し、AP+PBの最小値を求めよ。
この動画を見る 

福田の数学〜筑波大学2023年理系第3問〜球面に内接する四面体

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
3 座標空間内の原点Oを中心とする半径rの球面S上に4つの頂点がある四面体ABCDが
OA+OB+OC+OD=0
を満たしているとする。また三角形ABCの重心をGとする。
(1)OGODを用いて表せ。
(2)OAOB+OBOC+OCOArを用いて表せ。
(3)点Pが球面S上を動くとき、PAPB+PBPC+PCPAの最大値をrを用いて表せ。さらに、最大値をとるときの点Pに対して、|PG|をrを用いて表せ。

2023筑波大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第2問〜空間の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間内に立方体ABCD-EFGHがある。辺ABを2:1に内分
する点をP、線分CPの中点をQとする。
(1)AQ=AB+
ADである。
(2)線分AG上の点RをQRAGとなるようにとると
AR=AGである。
(3)直線QRが平面EFGHと交わる点をSとすると
AS=AB+
AD+ AEである。

2022上智大学文系過去問
この動画を見る 

福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間ベクトルに対し、次の関係を定める。
a=(a1,a2,a3)b=(b1,b2,b3)が、
次の(i),(ii),(iii)のいずれかを
満たしているときabより前であるといい、
abと表す。
(i)a1<b1   (ii)a1=b1かつ
a2<b2   (iii)a1=b1かつa2=b2かつa3<b3

空間ベクトルの集合$P=\left{{(x,y,z) | x,y,zは0以上7以下の整数\right}\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }mPP=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)(1)\overrightarrow{ p_{67} }(2)\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}$の要素のうちで最大のものを求めよ。

2022早稲田大学商学部過去問
この動画を見る 

福田の数学〜東北大学2024年理系第4問〜2つの球面の交わりの円

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4 xyz空間において、点P1(3,-1,1)を中心とした半径5の球面S1と、点P2(5,0,-1)を中心とし半径が2の球面S2を考える。
(1)線分P1P2の長さを求めよ。
(2)S1S2が交わりをもつことを示せ。この交わりは円となる。この円をCとし、その中心をP3とする。Cの半径および中心P3の座標を求めよ。
(3)(2)の円Cに対し、Cを含む平面をHとする。xy平面とHの両方に平行で、大きさが1のベクトルを全て求めよ。
(4)点Qが(2)の円C上を動くとき、Qとxy平面の距離dの最大値を求めよ。
また、dの最大値を与える点Qの座標を求めよ。
この動画を見る 
PAGE TOP preload imagepreload image