重積分⑨-9#149【広義積分】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑨-9#149【広義積分】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
これを解け.
(1)$\displaystyle \int_{-\infty}^{\infty}\\ e^{-ax^2} \ dx \ (a\gt 0)$
(2)$\displaystyle \int_{-\infty}^{\infty}\\ e^{-(x-1)^2} \ dx \ $
(3)$\displaystyle \int_{-\infty}^{\infty}\\ e^{-x^2-4x} \ dx \ $
定理$\displaystyle_{0}^{\infty} \ e^{-x^2}\ dx=\dfrac{\sqrt x}{2}$
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.
(1)$\displaystyle \int_{-\infty}^{\infty}\\ e^{-ax^2} \ dx \ (a\gt 0)$
(2)$\displaystyle \int_{-\infty}^{\infty}\\ e^{-(x-1)^2} \ dx \ $
(3)$\displaystyle \int_{-\infty}^{\infty}\\ e^{-x^2-4x} \ dx \ $
定理$\displaystyle_{0}^{\infty} \ e^{-x^2}\ dx=\dfrac{\sqrt x}{2}$
投稿日:2021.01.29

<関連動画>

重積分⑨-4【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

$\iint_D\ (1+x^2+y^2)^{-\frac{5}{2}}dx\ dy $
$D:x\geqq 0,y \geqq 0$とする.
この動画を見る 

重積分⑦-3【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$∬_D \frac{x}{y \sqrt{1+x^2+y^2}}dxdy$
$D: 0 \leqq x \leqq y $ , $\frac{1}{2} \leqq x^2+y^2 \leqq 1$
この動画を見る 

練習問題40 数研1級1次 高専数学 教採対応 微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x\dfrac{dy}{dx}+y=y^2\log x$の
一般解を求めよ.
この動画を見る 

微分方程式⑪-2【非線形2階微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$(y+1)\dfrac{d^2y}{dx^2}+\left(\dfrac{dy}{dx}\right)^2=0$
(2)$y\dfrac{d^2y}{dx^2}=1-\left(\dfrac{dy}{dx}\right)^2$
この動画を見る 

#26 数検1級1次 過去問 複雑な方程式

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^3+y^3+z^3=36 \\
xyz=6
\end{array}
\right.
\end{eqnarray}$
において、$x \gt y \gt z$を満たす解を求めよ。
この動画を見る 
PAGE TOP