大学入試問題#759「サムネみすった」 東京理科大学(2002) #定積分 - 質問解決D.B.(データベース)

大学入試問題#759「サムネみすった」 東京理科大学(2002) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{12}} \cos\ x・\cos\ 2x・\cos\ 3x\ dx$

出典:2002年東京理科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{12}} \cos\ x・\cos\ 2x・\cos\ 3x\ dx$

出典:2002年東京理科大学 入試問題
投稿日:2024.03.09

<関連動画>

【数学】医学部1分解説!!2018年度聖マリアンナ医科大学大問1(2)基本公式が分かる人向け #shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$e$を自然対数の底とする。
曲線$y=1+e^x$とy軸及び2直線$x=1,y=1$で囲まれた部分を、
x軸の周りに1回転させてできる立体の体積は(イ)である。
この動画を見る 

兵庫医科大学(2021) #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#兵庫医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{0} \displaystyle \frac{x^5}{(x^3-1)^2} dx$

出典:2021年兵庫医科大学 入試問題
この動画を見る 

3次関数 三角形の面積最大 お茶の水女子大

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6x^2+8x$,3点$O,A(3,f(3))$,$P(t,f(t)),0\lt t\leqq 4,t\neq 3$である.
$\triangle OAP$の面積が最大となる$t$の値を求めよ.

1987お茶の水女子大過去問
この動画を見る 

【高校数学】毎日積分58日目~47都道府県制覇への道~【②鹿児島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x>0$で定義された曲線
$C : y=(log x)^2$
を考える
(1)$a$を正の実数とする時、点$P(a,(log a)^2)$における曲線$C$の接線$L$の方程式を求めよ。
(2)$a>1$のとき、接線$L$と$x$軸の交点の$x$座標が最大となる場合の$a$の値$a_0$を求めよ。
(3)$a$の値が(2)の$a_0$に等しいとき、直線$L$の$y≧0$の部分と曲線$C$と$x$軸で囲まれた部分を、$x$軸の周りに1回転させてできる図形の体積を求めよ。
【鹿児島大学 2023】
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第1問(3)〜命題と必要十分な条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
(3) aを正の実数とする。 実数からなる集合X, Yを次で定める。
$X={x|0 < x < a}, Y={y|3 < y < 5}$
次のそれぞれの命題が成り立つための必要十分条件を、選択肢から1つずつ選べ。
(i) すべてのx∈Xとすべてのy∈Yに対してx<yとなる
(ii) 「すべてのx∈Xに対してx<y」となるy∈Yが存在する
(iii) すべてのx∈Xに対して「x<yとなるy∈Yが存在する」

2022上智大学理系過去問
この動画を見る 
PAGE TOP