福田のおもしろ数学035〜2001年数学オリンピックの名作〜13で割った余りを求める - 質問解決D.B.(データベース)

福田のおもしろ数学035〜2001年数学オリンピックの名作〜13で割った余りを求める

問題文全文(内容文):
$1^{2001}+2^{2001}+3^{2001}+…+2001^{2001}$を13で割ったあまりを求めよ

2001数学オリンピック過去問
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
$1^{2001}+2^{2001}+3^{2001}+…+2001^{2001}$を13で割ったあまりを求めよ

2001数学オリンピック過去問
投稿日:2024.01.29

<関連動画>

数学オリンピック予選 整数問題

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$11^{12^{13}}$の十の位

$11$の$12^{13}$乗であり
$11^{12}$の$13$乗ではない

出典:2007年数学オリンピック 予選問題
この動画を見る 

数学オリンピック予選 合同式の「割り算‼️」

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
${}_{40}\mathrm{C}_{20}$を41で割った余りを求めよ.

数学オリンピック過去問
この動画を見る 

福田のおもしろ数学210〜2つ対称式の条件から和を求める

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#式の計算(整式・展開・因数分解)#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数 $x, \, y$ が $(1+x)(1+y)(x+y)=2022, \, x^3+y^3=1933$ を満たすとき、$x+y=?$
この動画を見る 

福田のおもしろ数学013〜ジュニア数学オリンピックから〜条件を満たす6個の変数は

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b,c,d,e,f$は相異なる1以上9以下の整数
$ab=cd=e+f$のとき、
$a+b+c+d+e+f$
として考えられる値をすべて求めよ.

ジュニア数学オリンピック過去問
この動画を見る 

数学ゴールデン#2【漫画】で紹介された数オリの問題の解答がなかったから作成してみた。

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 10+\sqrt{ 1 } }+\sqrt{ 10+\sqrt{ 2 } }+・・・+\sqrt{ 10+\sqrt{ 99 } }}{\sqrt{ 10-\sqrt{ 1 } }+\sqrt{ 10-\sqrt{ 2 } }+・・・+\sqrt{ 10-\sqrt{ 99 } }}$を計算せよ。

出典:数学ゴールデン 数学オリンピック
この動画を見る 
PAGE TOP