【中学数学】累積度数・累積度数分布表・累積相対度数~分かりやすく~ 7-6【中1数学】 - 質問解決D.B.(データベース)

【中学数学】累積度数・累積度数分布表・累積相対度数~分かりやすく~ 7-6【中1数学】

問題文全文(内容文):
累積度数・累積度数分布表・累積相対度数の解説
単元: #数学(中学生)#中1数学#資料の活用
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
累積度数・累積度数分布表・累積相対度数の解説
投稿日:2024.09.16

<関連動画>

【テスト対策・中1】1章-2

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①絶対値が7である整数をすべて書きなさい.

②絶対値が4.1より小さい整数の個数を書きなさい.

③絶対値が3より大きく5以下になる整数をすべて書きなさい.

④絶対値が2以上7未満になる整数の個数を書きなさい.
この動画を見る 

【高校受験対策】数学-図形17

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図は,$BC = 6cm$の正四角すい$ABCDE$を表している.
次の①は指示にしたがって,$②,③$は最も簡単な数で答えよ.
ただし,根号を使う場合は$\sqrt{}$の中を最も小さい整数にすること.

①図に示す立体において,辺$BC$とねじれの位置にある辺を,
すべて書きなさい.

②辺$AB,AC,AD,AE$の中点をそれぞれ$F,G,H,I$とする.
正四角すい$ABCDE$を4点$F,G,H,I$を通る平面で分けたときにできる2つの立体のうち,
頂点$A$をふくまない立体の体積は,四角すい$FBCDE$の体積の何倍か求めよ.

③辺$AB$上に点$J$,辺$AC$上に,点$K$を,
$AJ:JB = AK: KC = 1:2$となるようにとると,
四角形$JKDE$の面積が$24cm^2$である.
このとき,辺$AC$の長さを求めよ.

図は動画内参照
この動画を見る 

【高校受験対策】数学-図形19

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#立体図形#立体図形その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図1の立体は、$AB=6cm、 AD = 2cm 、 AE = 4cm$の直方体である。
このとき、次の問に答えなさい。

①辺$AB$とねじれの位置にあり、面$ABCD$と平行である辺はどれか、すべて答えなさい。

②図2のように、面$EFGH$の対角線$EG、HF$の交点を$I$とする。
$\triangle DHI$を、辺$DH$を軸として1回転させてできる円すいの母線の長さを求めなさい。
(図3のように、$AB、BF$上の点をそれぞれ$P、Q$とする)

③図3において、$DP+PQ+QG$が最小となるときの
$DP+PQ+QC$の値を求めなさい。

④図3において、$DP+PQ+QG$が最小となるときの、
三角すい$BPQC$の体積を求めなさい。

図は動画内参照
この動画を見る 

自由研究のネタになる立体の展開図

アイキャッチ画像
単元: #平面図形#立体図形#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
自由研究のネタになる「正十二面体の展開図」について解説しています。
※展開図は動画内参照
この動画を見る 

【中学数学】四則演算の総復習【中1夏期講習①】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle (1)\,
(-2)^3 \times 7 - (-3)^2 \times 5
$
$\displaystyle (2)\,
(5 - 17) \div (11 - 5) - \{2 \times (-3) - 3\}
$
$\displaystyle (3)\,
(3^2 - 7) \times 6 + \{(2 - 5)^2 + 11\}
$
$\displaystyle (4)\,
(-\frac{3}{2}) \times (- \frac{4}{9}) + \frac{2}{3} \times \frac{7}{4}
$
$\displaystyle (5)\,
(\frac{1}{2} + \frac{1}{3}) \div (-\frac{5}{12}) + (\frac{2}{3} + \frac{5}{6}) \times \frac{14}{15}
$
$\displaystyle (6)\,
\{(\frac{3}{2})^3 + 1 \} \times \frac{4}{5} + ( \frac{1}{2} + \frac{1}{4}) \times \frac{2}{5}
$
$\displaystyle (7)\,
-6 \times \{14 \div (5 - 7) \}
$
$\displaystyle (8)\,
8 - (-2)^2 \times (-5) + (-3)
$
この動画を見る 
PAGE TOP