福田のおもしろ数学134〜n個の因数の席の計算 - 質問解決D.B.(データベース)

福田のおもしろ数学134〜n個の因数の席の計算

問題文全文(内容文):
次の式を計算せよ。$x$≠1 とする。
(1+$x$)(1+$x^2$)(1+$x^4$)...(1+$x^{2^{n-1}}$) を計算せよ。
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 福田次郎
問題文全文(内容文):
次の式を計算せよ。$x$≠1 とする。
(1+$x$)(1+$x^2$)(1+$x^4$)...(1+$x^{2^{n-1}}$) を計算せよ。
投稿日:2024.05.07

<関連動画>

因数分解 中央大附属 2023

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^2b^2 - 2abd -c^2 +d^2$

2023中央大学付属高等学校
この動画を見る 

因数分解の解法の流れをつかむ30秒~全国入試問題解法 #shorts #数学 #高校入試 #mathematics #動体視力 #裏ワザ

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ (x^2+x)^2-x(x+1)-2 $を因数分解しなさい.

明大中野高校過去問
この動画を見る 

【ひと工夫…!】因数分解:愛光高等学校~全国入試問題解法

単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)#愛光高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$2\left(x^2-5x\right)^2-72\;$を因数分解しなさい。
この動画を見る 

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 

【#5】【因数分解100問】基礎から応用まで!(41)〜(50)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(41)$2xy-x-2y+1$
(42)$ab-bc+cd-da$
(43)$16-12y+3xy-x^2$
(44)$x^3y+x^2-xyz^2-z^2$
(45)$a^2+b^2+2bc+2ca+2ab$
(46)$(x+y+5)(x+2y-3)$
(47)$(x-y-2)(x-y+1)$
(48)$(2x+y+4)(3x+y-5)$
(49)$-(a-b)(b-c)(c-a)$
(50)$(a+1)(b+1)(c+1)$
この動画を見る 
PAGE TOP