【高校受験対策】数学-文章題5 - 質問解決D.B.(データベース)

【高校受験対策】数学-文章題5

問題文全文(内容文):
高校受験対策・文章題5


右の記事は、ある中学校の保健委員会が発行した「保健だより」の一部である。
品数が「3品以上」と答えた生徒が、1、2年生あわせて149人であったとき、 朝食を「食べた」と答えた1年生、2年生はそれぞれ何人であったか、方程式をつくって求めなさい。なお途中の計算も書くこと。


A市の家庭における1か月あたりの水道料金は、 (水道料金)=(基本料金)+(水の使用量に応じた使用料金)となっています。
使用量が$30m^3$までは、$1m^3$あたりの使用料金が一定であり、使用量が$30m^3$を超えた分の$1m^3$があたりの使用料金は、 使用量が30$m^3$までの$1m^3$あたりの使用料金より80円高くなっています。
A市のある家庭における1ヶ月の水道料金は、使用量が$32m^3$のときは5310円、使用量が$28m^3$のときは4710円でした。 使用量が$30m^3$までの$1m^3$あたりの使用料金を求めなさい。
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・文章題5


右の記事は、ある中学校の保健委員会が発行した「保健だより」の一部である。
品数が「3品以上」と答えた生徒が、1、2年生あわせて149人であったとき、 朝食を「食べた」と答えた1年生、2年生はそれぞれ何人であったか、方程式をつくって求めなさい。なお途中の計算も書くこと。


A市の家庭における1か月あたりの水道料金は、 (水道料金)=(基本料金)+(水の使用量に応じた使用料金)となっています。
使用量が$30m^3$までは、$1m^3$あたりの使用料金が一定であり、使用量が$30m^3$を超えた分の$1m^3$があたりの使用料金は、 使用量が30$m^3$までの$1m^3$あたりの使用料金より80円高くなっています。
A市のある家庭における1ヶ月の水道料金は、使用量が$32m^3$のときは5310円、使用量が$28m^3$のときは4710円でした。 使用量が$30m^3$までの$1m^3$あたりの使用料金を求めなさい。
投稿日:2019.01.19

<関連動画>

【公式なんていらない…!】確率:自由が丘学園高等学校~全国入試問題解法

単元: #数学(中学生)#中2数学#確率
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
図のような道でAからBまで遠回りをせずに行くとき、CとDの両方の地点を通る行き方は何通りあるか??
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART2)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 

【中学数学】イコールが2つある方程式の解き方~連立方程式の応用~ 2-5.5【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
以下の方程式を解け。
$3x-4y+5=2x+y-4=5x-3y+1$
この動画を見る 

【確率の正体見たり「平方根」!】確率:鳥取県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
大きいさいころと小さいさいころを同時に1回振ったとき,
大の出目は$a$であり,小の出目は$b$であった.
$\sqrt{a+b}$の値が整数となる確率を求めなさい.
※さいころは,どの目が出ることも同様に確からしい.

鳥取県高校過去問
この動画を見る 

【中2 数学】  中2-59  仮定と結論

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 仮定と結論
以下の問に答えよ
[ポイント] a=b、b=c ならば、a=c である。
仮定…①____、結論…②____
証明するとき、仮定は③____アイテム、結論は④____アイテム
◎仮定には下線、結論には波線を引こう!
⑤ △ ABC ≡ △ DEF ならば、AB=DEである。
⑥ 2 つの直線が平行ならば、錯角は等しい。
⑦ 芸能人に会えるならば、ベッキーに会う。
※図は動画内参照
この動画を見る 
PAGE TOP