対数方程式 - 質問解決D.B.(データベース)

対数方程式

問題文全文(内容文):
log9a=log12b=log16(a+b),baの値を求めよ.
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
log9a=log12b=log16(a+b),baの値を求めよ.
投稿日:2022.05.23

<関連動画>

対数の近似値 立命館

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
log107を小数第2位まで求めよ.
log102=0.3010,
log103=0.4771

立命館大過去問
この動画を見る 

浜松医大 対数の基本 数3不要

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)2進法で30桁の自然数nを10進法で表すと何桁か,
log10=0.3010

(2)自然数nを2進法で表すとan桁となる.
limn\(x)log10nanを求めよ.

浜松医大過去問
この動画を見る 

大学入試問題#6 学習院大学(2021) 対数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
log2(log2(x2)log12(x4))=2を解け。

出典:2021年学習院大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第3問〜指数関数で定義された数列の漸化式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3 実数aに対してf(a)=12(2a2a)とおく。また、A=2aとする。
(1)等式(A1A)3=    (A1A)3    (A1A) より、実数aに対して
{f(a)}3=        f(3a)        f(a) ...①が成り立つ。
(2)実数a,bに対してf(a)=bが成り立つならば、A=2aは2次方程式
A2    bA    =0
を満たす。2a>0より、abを用いて
a=log2(    b+b2+    ) ...②
と表せる。つまり、任意の実数bに対してf(a)=bとなる実数aが、ただ1つに定まる。
以下、数列{an}に対してf(an)=bn (n=1,2,3,...)で定まる数列{bn}が、関係式
4bn+13+3bn+1bn=0 (n=1,2,3,...) ...③
を満たすとする。
(3)①と③からf(    an+1)=f(an) (n=1,2,3,...)となるので、(2)より、
an=a1    np (n=1,2,3,...)が得られる。ここで、p=    である。
(4)n≧2に対して、Sn=k=2n3k1bk3 とおく。cn=3nbn (n=1,2,3,...)で定まる数列{cn}の階差数列を用いると、③より、
Sn=        b1    n    bn (n=2,3,4,...)
となる。ゆえに、b1=43S5-108 が成り立つならばa1=    log2     である。
この動画を見る 

大分大 ざ・見掛け倒しの問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
an=log10(1+3n)
10k=1naknの式で表せ.

2021大分大過去問
この動画を見る 
PAGE TOP preload imagepreload image