箱ヒゲ図を基本から解説!! 早稲田実業 2022 入試問題解説41問目 - 質問解決D.B.(データベース)

箱ヒゲ図を基本から解説!!  早稲田実業 2022 入試問題解説41問目

問題文全文(内容文):
箱ひげ図を書け
*図は動画内参照

2022早稲田実業学校
単元: #数学(中学生)#数Ⅰ#データの分析#データの分析#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
箱ひげ図を書け
*図は動画内参照

2022早稲田実業学校
投稿日:2022.02.11

<関連動画>

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第5問〜図形の性質

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
点$Z$を端点とする半直線$ZX$と半直線$ZY$があり、$0° \lt \angle XZY \lt 90°$とする。
また、$0° \lt \angle SZX \lt \angle XZY$かつ$0° \lt \angle SZY \lt \angle XZY$を満たす点$S$をとる。
点$S$を通り、半直線$ZX$と半直線$ZY$の両方に接する円を作図したい。
円$O$を、次の$(Step\ 1)~(Step\ 5)$の手順で作図する。

手順
$(Step\ 1) \angle XZY$の二等分線$l$上に点$C$をとり、下図(※動画参照)のように半直線$ZX$
と半直線$ZY$の両方に接する円$C$を作図する。また、円$C$と半直線$ZX$との接点を$D,$
半直線$ZY$との接点を$E$とする。
$(Step\ 2)$ 円Cと直線$ZS$との交点の一つを$G$とする。
$(Step\ 3)$ 半直線$ZX$上に点$H$を$DG//HS$を満たすようにとる。
$(Step\ 4)$ 点$H$を通り、半直線$ZX$に垂直な直線を引き、$l$との交点を$O$とする。
$(Step\ 5)$ 点$O$を中心とする半径$OH$の円$O$をかく。

(1)$(Step\ 1)~(Step\ 5)$の手順で作図した円$O$が求める円であることは、次の構想に
基づいて下のように説明できる。

構想:円$O$が点$S$を通り、半直線$ZX$と半直線$ZY$の両方に接する円であることを
示すには、$OH=\boxed{\boxed{\ \ ア\ \ }}$が成り立つことを示せばよい。

作図の手順より、$\triangle ZDG$と$\triangle ZHS$との関係、および$\triangle ZDC$と$\triangle ZHO$との
関係に着目すると
$DG:\boxed{\boxed{\ \ イ\ \ }}=\boxed{\boxed{\ \ ウ\ \ }}:\boxed{\boxed{\ \ エ\ \ }}$
$DC:\boxed{\boxed{\ \ オ\ \ }}=\boxed{\boxed{\ \ ウ\ \ }}:\boxed{\boxed{\ \ エ\ \ }}$

であるから、$DG:\boxed{\boxed{\ \ イ\ \ }}=DC:\boxed{\boxed{\ \ オ\ \ }}$となる。
ここで、3点$S,O,H$が一直線上にある場合は、$\angle CDG=\angle \boxed{\boxed{\ \ カ\ \ }}$で
あるので、$\triangle CDG$と$\triangle \boxed{\boxed{\ \ カ\ \ }}$との関係に着目すると、$CD=CG$より
$OH=\boxed{\boxed{\ \ ア\ \ }}$であることがわかる。
なお、3点$S,O,H$が一直線上にある場合は、$DG=\boxed{\ \ キ\ \ }DC$となり、
$DG:\boxed{\boxed{\ \ イ\ \ }}=DC:\boxed{\boxed{\ \ オ\ \ }}$より$OH=\boxed{\boxed{\ \ ア\ \ }}$である
ことがわかる。

$\boxed{\boxed{\ \ ア\ \ }}~\boxed{\boxed{\ \ オ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$DH$ ①$HO$ ②$HS$ ③$OD$ ④$OG$
⑤$OS$ ⑥$ZD$ ⑦$ZH$ ⑧$ZO$ ⑨$ZS$

$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪$OHD$ ①$OHG$ ②$OHS$ ③$ZDS$
④$ZHG$ ⑤$ZHS$ ⑥$ZOS$ ⑦$ZCG$


(2)点$S$を通り、半直線$ZX$と半直線$ZY$の両方に接する円は二つ作図できる。
特に、点$S$が$\angle XZY$の二等分線$l$上にある場合を考える。半径が大きい方の
円の中心を$O_1$とし、半径が小さい方の円の中心を$O_2$とする。また、円$O_2$と
半直線$ZY$が接する点を$I$とする。円$O_1$と半直線$ZY$が接する点を$J$とし、円$O_1$と
半直線$ZX$が接する点を$K$とする。
作図をした結果、円$O_1$の半径は$5$, 円$O_2$の半径は3であったとする。このとき、
$IJ=\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケコ\ \ }}$である。さらに、円$O_1$と円$O_2$の接点$S$に
おける共通接線と半直線$ZY$との交点を$L$とし、
直線$LK$と円$O_1$との交点で点$K$とは異なる点を$M$とすると

$LM・LK=\boxed{\ \ サシ\ \ }$

である。
また、$ZI=\boxed{\ \ ス\ \ }\sqrt{\boxed{\ \ セソ\ \ }}$であるので、直線$LK$と直線$l$との交点を$N$とすると

$\displaystyle \frac{LN}{NK}=\displaystyle \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }}, SN=\displaystyle \frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$

である。

2021共通テスト過去問
この動画を見る 

【数Ⅰ】【2次関数】2次不等式応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次不等式$ax^2+x+b\gt 0$の解が$x\lt -3,2\lt x$であるとき、定数$a,b$の値を求めよ。

$a,b$は定数とする。2次不等式$4x^2+ax+b\lt 0$の解が$1\lt x\lt \dfrac{5}{4}$であるとき、2次不等式$bx^2+ax+4\geqq 0$の解を求めよ。
この動画を見る 

展開だけど、カラクリわかるかな? 慶應義塾

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(x+2y)(2x-y)(3x+y)(x-3y)を展開せよ

慶應義塾高等学校
この動画を見る 

19兵庫県教員採用試験(数学:1-3番 命題)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(3)
$x,y,k \in \mathbb{ R }$
$x^2+y^2 \leqq 1$が$2x+y \geqq k$の十分条件となるkの範囲
この動画を見る 

福田の数学〜早稲田大学2024年人間科学部第1問(2)〜不等式の表す領域の面積

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)次の連立不等式で表される領域の面積は$\boxed{イ}$+$\boxed{ウ}\pi$ である。
$\left\{\begin{array}{1}
x^2+y^2≦4|x|+4|y|\\
x^2≦y^2\\
\end{array}\right.$
この動画を見る 
PAGE TOP