京大の整数問題!〇〇に注目!【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

京大の整数問題!〇〇に注目!【京都大学】【数学 入試問題】

問題文全文(内容文):
2つの奇数a,bに対して、$m=11a+b,n=3a+b$とおく。
$m,n$が平方数でないことを証明しなさい。

京都大過去問
チャプター:

00:04 問題文
01:04 本問題の解説・解答
06:43 次回の問題

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
2つの奇数a,bに対して、$m=11a+b,n=3a+b$とおく。
$m,n$が平方数でないことを証明しなさい。

京都大過去問
投稿日:2022.11.17

<関連動画>

大学入試問題#361「作成時間がありませんでした。」 横浜国立大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}\displaystyle \frac{log\ x}{x^2}dx$

出典:2014年横浜国立大学 入試問題
この動画を見る 

【17−9 自然対数の底と極限】を宇宙一わかりやすく「数学大学入試良問集」

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を2以上の整数とする。
平面上に$n+2$個の点$O,P_1,P_2・・・P_n$があり、次の2つの条件を満たしている。
①$\angle P_{k-1}OP_k=\displaystyle \frac{\pi}{n}(1 \leqq k \leqq n),\angle OP_{k-1}P_k=\angle OP_0P_1(2 \leqq k \leqq n)$

②線分$OP_0$の長さは1、線分$OP_1$の長さは$1+\displaystyle \frac{1}{n}$である。

線分$P_{k-1}P_k$の長さを$a_k$とし、$s_n=\displaystyle \sum_{k=1}^n a_k$とおくとき、$\displaystyle \lim_{ n \to \infty }s_n$を求めよ。
この動画を見る 

大学入試問題#672「最近、このタイプが流行り?」 早稲田大学商学部(2022)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
実数$x,y$が$x^2+y^2 \leqq 3$を満たしているとき$x-y-xy$の最大値を求めよ

出典:2022年早稲田大学商学部 入試問題
この動画を見る 

【理数個別の過去問解説】2014年度宮崎大学 数学 工学部前期第5問解説

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
不等式$\log_x y\lt 2+3\log_y x$の表す領域を座標平面上に図示せよ.

2014年度宮崎大学 数学 工学部前期第5問解説
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第2問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問2(2)
次の問いに答えよ。
(1)実数A,B,C,Dに対して、複素数zを
$z=\dfrac{A+\sqrt5 Bi}{C+\sqrt5 Di}$
で定める。ただし、$C+\sqrt5 Di\neq 0$とする。このとき、$x=x+yi$をみたす実数x,yをA,B,C,Dの式で表せ。
(2)次をみたす整数A,B,C,Dを求めよ。
$\dfrac{16+\sqrt5 i}{29}=\dfrac{A+\sqrt5 Bi}{C+\sqrt5 Di}$
$AD-BC=-1$
$D\gt 0$
この動画を見る 
PAGE TOP