【高校受験対策】数学-図形29(番号間違えました) - 質問解決D.B.(データベース)

【高校受験対策】数学-図形29(番号間違えました)

問題文全文(内容文):
高校受験対策・図形28

Q
図1のように、円$o$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、 $△ABC$をつくる。
点$C$をふくまない$\stackrel{\huge\frown}{AB}$上に、点$D$を$\angle DAB \lt \angle BAC$となるようにとり、点$B$と点$D$を線分で結ぶ。
線分$CD$上に点$E$を$∠EAC=∠DAB$となるようにとる。

①図1において、$\triangle ADE \backsim \triangle ABC$を証明しなさい。

②図2は、図1において$\angle BAC=60°$、点$C$を含まない$\stackrel{\huge\frown}{AD}$と$\stackrel{\huge\frown}{DB}$の長さの比が$3:1$となる場合を表している。
図2において、円$o$の半径が4cmのとき、$△ADC$の面積を求めなさい。
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形28

Q
図1のように、円$o$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、 $△ABC$をつくる。
点$C$をふくまない$\stackrel{\huge\frown}{AB}$上に、点$D$を$\angle DAB \lt \angle BAC$となるようにとり、点$B$と点$D$を線分で結ぶ。
線分$CD$上に点$E$を$∠EAC=∠DAB$となるようにとる。

①図1において、$\triangle ADE \backsim \triangle ABC$を証明しなさい。

②図2は、図1において$\angle BAC=60°$、点$C$を含まない$\stackrel{\huge\frown}{AD}$と$\stackrel{\huge\frown}{DB}$の長さの比が$3:1$となる場合を表している。
図2において、円$o$の半径が4cmのとき、$△ADC$の面積を求めなさい。
投稿日:2019.11.30

<関連動画>

計算のテクニック!以後お見知りおきを♪~全国入試問題解法 #Shorts #数学

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$2021\times2019-2018^2-2020\times2023+2019^2+2020$を計算せよ.
この動画を見る 

2023高校入試数学解説60問目 整数問題 早大学院 訂正はコメント欄に

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$N=3n^2+72n+260$
Nと2023の差が最も小さくなるような自然数nは?

2023早稲田大学 高等学院
この動画を見る 

2023高校入試解説21問目 2通りで解説!!座標平面上の円 久留米大附設

アイキャッチ画像
単元: #数学(中学生)#中3数学#円#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
円とy軸との交点のy座標を全て求めよ
*図は動画内参照

2023久留米大学附設高等学校(改)
この動画を見る 

【それを決めるのは…!】整数:大阪府公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#大阪府公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ n $を自然数とするとき,$ 5-\dfrac{78}{n}$の値が自然数となるような
最も小さい自然数$ n $の値を求めなさい.

大阪府公立高等学校過去問
この動画を見る 

【高校受験対策】数学-死守45

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守45

①$-5+2$を計算しなさい。

②$(x+2)^2$を展開しなさい。

③$y$は$x$に反比例し、比例定数は 3である。
$x$と$y$の関係を式に表しなさい。

④正五角形の内角の和は何度か、求めなさい。

⑤二次方程式 $2x^2-x=0$を解きなさい。

⑥となる自然数$a$をすべて求めなさい。

⑦直線$6x-y=1$0と$x$軸との交点をPとする。
直線$ax-2y=15$が点Pを通るとき、$a$の値を求めなさい。

⑧500円、100円、50円、10円の硬質が1枚ずつある。
この4枚の硬貨を同時に投げるとき、表が出た硬貨の合計金額が、600円以上になる確率を求めなさい。
ただしすべての硬貨の表と裏の出かたは同様に確からしいものとする。

⑨右の図は円錐の展開図です。
この展開図を組み立てたとき、側面となるおうぎ形は半径が16cm、中心角が135°である。
底面となる円の半径を求めなさい。

⑩右の表は、生徒100人の通学時間を度数分布表に表したものである。
$a:b=4:3$であるとき、中央値が含まれる階級の相対度数を求めなさい。
この動画を見る 
PAGE TOP