練習問題47 東京理科大学 部分積分 数検準1級 教員採用試験 - 質問解決D.B.(データベース)

練習問題47 東京理科大学 部分積分 数検準1級 教員採用試験

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{log\ x}{(x+1)^2}\ dx$を計算せよ。

出典:東京理科大学
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#東京理科大学#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{log\ x}{(x+1)^2}\ dx$を計算せよ。

出典:東京理科大学
投稿日:2021.08.16

<関連動画>

08兵庫県教員採用試験(数学:4番 微積・極限値)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
4⃣$f_n(x)=\frac{logx}{x^n}$
(1)$log x < x ( x > 1)$
を示し$\displaystyle \lim_{ x \to \infty } f_n(x)$を求めよ。
(2)$y=f_n(x)$のグラフをかけ
(3)$x=a_n$(極大値をとるx座標)
$y=f_n(x),$x軸で囲まれた面積を$S_n$とする。
$\displaystyle \lim_{ n \to \infty } n^2S_n$を求めよ。
この動画を見る 

兵庫県教員採用試験(数学:12番 極限値)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{12}$
$\displaystyle \int_{0}^{\infty} \ x\ e^{-x} dx$を求めよ.
*$\displaystyle \lim_{t\to\infty}\dfrac{t}{e^t}=0$は利用してよい.
この動画を見る 

16東京都教員採用試験(数学:1-7 極限値)

アイキャッチ画像
単元: #関数と極限#関数の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(7)
$\displaystyle \lim_{ n \to -0 } (\sqrt{\frac{1}{x^2}+\frac{3}{x}} - \sqrt{\frac{1}{x^2}-\frac{2}{x}})$
この動画を見る 

07和歌山県教員採用試験(数学:3番 解の個数)

アイキャッチ画像
単元: #数Ⅰ#数と式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$x+2=ae^x$の実数解の個数を調べよ。
$a$は定数とする。
この動画を見る 

04兵庫県教員採用試験(数学:2番 数列と帰納法)

アイキャッチ画像
単元: #数列#漸化式#数学的帰納法#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$a_1=\frac{1}{2}$ , $a_{n+1}=\frac{1}{2-a_n}$
一般項$a_n$を求めよ
この動画を見る 
PAGE TOP