問題文全文(内容文):
$連立方程式$
\begin{eqnarray}
\left\{
\begin{array}{l}
2(x+\dfrac{1}{2}) - (y-\dfrac{1}{2}) = 8 \\
3(x+\dfrac{1}{2}) + 2(y-\dfrac{1}{2}) = 5
\end{array}
\right.
\end{eqnarray}
$を解け。$
$連立方程式$
\begin{eqnarray}
\left\{
\begin{array}{l}
2(x+\dfrac{1}{2}) - (y-\dfrac{1}{2}) = 8 \\
3(x+\dfrac{1}{2}) + 2(y-\dfrac{1}{2}) = 5
\end{array}
\right.
\end{eqnarray}
$を解け。$
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#東京都立産業技術高等専門学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$連立方程式$
\begin{eqnarray}
\left\{
\begin{array}{l}
2(x+\dfrac{1}{2}) - (y-\dfrac{1}{2}) = 8 \\
3(x+\dfrac{1}{2}) + 2(y-\dfrac{1}{2}) = 5
\end{array}
\right.
\end{eqnarray}
$を解け。$
$連立方程式$
\begin{eqnarray}
\left\{
\begin{array}{l}
2(x+\dfrac{1}{2}) - (y-\dfrac{1}{2}) = 8 \\
3(x+\dfrac{1}{2}) + 2(y-\dfrac{1}{2}) = 5
\end{array}
\right.
\end{eqnarray}
$を解け。$
投稿日:2024.11.25





