【中学数学】規則性の演習~岐阜県公立高校入試2019~【高校受験】 - 質問解決D.B.(データベース)

【中学数学】規則性の演習~岐阜県公立高校入試2019~【高校受験】

問題文全文(内容文):
規則性の演習 入試頻発問題を使用しての解説動画です
チャプター:

00:00 はじまり

00:17 問題はこれ

00:37 (1)の解説

02:34 (2)の解説

04:28 (3)の解説

05:04 (4)の解説

07:43 まとめ

08:20 問題と答え

08:33 花子さんの考え方

単元: #数学(中学生)#中1数学#方程式#高校入試過去問(数学)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
規則性の演習 入試頻発問題を使用しての解説動画です
投稿日:2020.12.08

<関連動画>

【中学数学】三角形の面積求めよ~2022年神奈川公立高校入試~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
図において、線分$AB$は円$O$の直径であり、2点$C,D$は円$O$の周上の点である。
また、点Eは線分$AC$上の点で、$BC//DE$であり、点$F$は線分$AB$と線分$DE$との交点である。
$AE=2cm,CE=1cm,DE=3cm$のとき、三角形$BDF$の面積を求めよ。
この動画を見る 

2025年浦和明の星女子中算数大問1(1)~(3)中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#方程式#式の計算(単項式・多項式・式の四則計算)
指導講師: 重吉
問題文全文(内容文):
(12-9/2+1.25)+17.5*8/3-6/5*(3-2.88)+3/10

計算問題の宿題がでました。明子さんは1日目に全体の1/3と4問、2日目に残りの半分と2問、3日目には12問解いて、宿題をすべて終えました。問題は全部で何問ありましたか。

濃さの違う3つの食塩水A,B,Cがあり、それぞれの濃さは9%、12%、18%です。AとBの食塩水を2:1の重さの比で混ぜた後、Cの食塩水を加えて、合計240gの食塩水を作りました。その後、できた食塩水から水をすべて蒸発させたところ、残った食塩の重さは36gでした。混ぜたAの食塩水の重さは何gであったか答えなさい。
この動画を見る 

【中1 数学】  中1-51  反比例のグラフを読みとる

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中1 数学 反比例のグラフを読みとる
以下の問に答えよ
[ポイント] 線の上にある座標は①___できる!!
◎式をもとめよう!
<反比例のグラフ②~④の図>
②_____、③_____、④_____
※図は動画内参照
この動画を見る 

これ知ってる?三平方の定理の裏技

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三平方の定理の裏技
この動画を見る 

【高校受験対策/数学】死守-78

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守78

①下の図のように、長方形$ABCD$の中に 1辺の長さが$\sqrt{5}cm$と$\sqrt{10}cm$の正方形がある。
このとき、斜線部分の長方形の間の長さを求めなさい。

②葉一くんは、下の図の平行四辺形$ABCD$の面積を求めるために、辺$BC$を底辺とみて、高さを測ろうと考えた。
点を$P$下の図のようにとるとき、線分$PH$が高さとなるような点$H$を作図によって求めなさい。

③1000円で、1個$a$円のクリームパン5個と1個$b$円のジャムパン3個を買うことができる。
ただし消費税は考えないものとする。
この数量の関係を表した不等式としてもっとも適切なものを、次の ア~エの中から一つ選んで、その記号を書きなさい。

ア $1000-(5a+3b) \lt 0$
イ $5a+3b \lt 1000$
ウ $1000-(5a+3b) \geqq 0$
エ $(5a+3b) \geqq 1000$

④ 右の図で、点$A$は関数$y=\frac{2}{x }$と関数$y=ax^2$のグラフの交点である。
点$B$は点$A$を$y$軸を対称の軸として対称移動させたものであり、$x$座標は$-1$である。
このことから、$a$の値はアであり、関数$y=ax^2$について、 $x$の値が1から3まで増加するときの変化の割合はイであることがわ かる。
このとき上のア・イに当てはまる数をそれぞれ書きなさい。
この動画を見る 
PAGE TOP