三重県教員採用試験(数学 対数の連立方程式) - 質問解決D.B.(データベース)

三重県教員採用試験(数学 対数の連立方程式)

問題文全文(内容文):
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
\log_x y=2 \\
\log_2 (x+1)+\log_2 (y-1)=5
\end{array}
\right.
\end{eqnarray}$
を解け.
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
\log_x y=2 \\
\log_2 (x+1)+\log_2 (y-1)=5
\end{array}
\right.
\end{eqnarray}$
を解け.
投稿日:2021.07.25

<関連動画>

14京都府教員採用試験(数学:1-(6) 積分)

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin x\ \sin2x\ dx$
を求めよ.
この動画を見る 

練習問題20 教採問題集 指数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#解と判別式・解と係数の関係#指数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$2^{3x}-2^{2n+2}-3・2^x+12=b$が
負の解をもつように$b$の値の範囲を求めよ.
この動画を見る 

06東京都教員採用試験(数学:1-(3) 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$ $0\leqq x\leqq 2\pi$
$2\cos^2 x-3\sin x+a=0$が解をもつように$a$の値を求めよ.
(解)
この動画を見る 

07神奈川県教員採用試験(数学:9番 領域と最小値)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{9}$
$x^2+xy-2y^2+6y-4\geqq 0$

$x^2+y^2$の最小値を求めよ.
この動画を見る 

15愛知県教員採用試験(数学:6番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$\left(\sin\theta+\dfrac{1}{2}\right)^2+\left(\cos\theta+\dfrac{1}{2}\right)^2=2$のとき,
$\sin\theta,\cos\theta$を解にもつ二次方程式も1つを求めよ.
この動画を見る 
PAGE TOP