【受験算数】小数・分数:⑧大きさ比べ - 質問解決D.B.(データベース)

【受験算数】小数・分数:⑧大きさ比べ

問題文全文(内容文):
大問1
分数を小数で表し、小数第3位を四捨五入したとき、0.04となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が450となる既約分数(約分できない分数)はCとDです。A、B、C、Dにあてはまる数を書きなさい。

大問2
分数を小数で表し、小数第3位を四捨五入したとき、0.03となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が56となる既約分数(約分できない分数)はCとDとEです。 A、B、C、D、Eにあてはまる数を書きなさい。
チャプター:

0:00 オープニング
0:10 大問1
11:13 大問2

単元: #算数(中学受験)#計算と数の性質#いろいろな計算#数の性質その他#約数・倍数を利用する問題
教材: #SPX#中学受験教材#6年算数D-支援
指導講師: 受験算数の森
問題文全文(内容文):
大問1
分数を小数で表し、小数第3位を四捨五入したとき、0.04となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が450となる既約分数(約分できない分数)はCとDです。A、B、C、Dにあてはまる数を書きなさい。

大問2
分数を小数で表し、小数第3位を四捨五入したとき、0.03となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が56となる既約分数(約分できない分数)はCとDとEです。 A、B、C、D、Eにあてはまる数を書きなさい。
投稿日:2024.11.08

<関連動画>

これ思いつくのすげぇ

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(975+319+753+197+531)÷5
この動画を見る 

【中学受験算数】図形問題を解くコツ教えます!円が転がった後の面積はセンターライン公式で楽勝!【図形問題基礎講座13】

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積#図形の移動
指導講師: こばちゃん塾
問題文全文(内容文):
例1 円Pがすべらずに1周したあとの面積は?(円周率3.14)

例2 円Pがすべらずに1周したあとの面積は?(円周率3.14)

単元卒業テスト
半径1㎝の円Pが、中心角90°、半径4㎝のおうぎ形AOBの外側を、1点で接したままはなれることなく1周します。
円Pが1周したあとにできる図形の面積は?(円周率3.14)

*図は動画内参照
この動画を見る 

道幅の面積 A 2021 名古屋

アイキャッチ画像
単元: #数学(中学生)#平面図形#角度と面積#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
畑の面積が全体の34倍となるときの道幅=?
*図は動画内参照

2021名古屋
この動画を見る 

小5算数基礎トレ解説10/15⑩「回転体の体積」

アイキャッチ画像
単元: #算数(中学受験)#立体図形#体積・表面積・回転体・水量・変化のグラフ
指導講師: 重吉
問題文全文(内容文):
【回転体の体積】
動画内図に図形Hがあり、ABの線を軸に回転させたときの回転体の体積を求めよ
この動画を見る 

2024年栄東中(A)算数大問②、③中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#約数・倍数を利用する問題#速さ#速さその他
指導講師: 重吉
問題文全文(内容文):
マラソン大会で栄くん、東さん、中さんの3人が同時にスタートして走り出し、栄くん、東さん、中さんの順にゴールしました。図1は3人がスタートしてからの時間と栄くんと東さんの道のりの差、東さんと中さんの道のりの差を表したものです。このとき、次の問いに答えなさい。ただし、3人は一定の速さで走るものとします。
※図は動画内参照
(1)栄くんと中さんの走る速さの比を最も簡単な整数の比で表しなさい。
(2)マラソン大会のコースは全長何mありますか。
(3)東さんがゴールするのはスタートしてから何分何秒後になりますか。

1つの整数に対し、ある規則にしたがって約数を配置した図形をつくります。約数を配置した点を頂点と呼ぶことにします。例えば、4に対しては4=2×2だから、図1のような頂点の個数が3個の直線がつくれます。18に対しては、18=2×3×3だから、図2のような頂点の個数が6個の長方形がつくれます。90に対しては、90=2×3×3×5だから、図3のような頂点の個数が12個の直方体がつくれます。このとき、次の問いに答えなさい。
(1)図1のアに入る数を答えなさい。
(2)2024に対してつくれる図形の頂点の個数は全部で何個になりますか。
(3)ある整数に対し頂点の個数が8個になる図形がつくれるとき、その整数として考えられる150以下の数は全部で何通りありますか。
※図は動画内参照
この動画を見る 
PAGE TOP preload imagepreload image