15東京都教員採用試験(数学:1-(7) 三角関数) - 質問解決D.B.(データベース)

15東京都教員採用試験(数学:1-(7) 三角関数)

問題文全文(内容文):
$\boxed{1}-(7)$
$0\leqq \theta \lt 2\pi$
$\sin2\theta-\cos2\theta+2(\sin\theta+\cos\theta)+1=0$を解け.
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(7)$
$0\leqq \theta \lt 2\pi$
$\sin2\theta-\cos2\theta+2(\sin\theta+\cos\theta)+1=0$を解け.
投稿日:2021.02.16

<関連動画>

20三重県教員採用試験(数学:1-(3) 対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$x \geq 3,y \geq \dfrac{1}{3},xy^2=243$
のとき
$\left(\log_3 x\right)\left(\log_3 y\right)$
の最大値,最小値を求めよ.
この動画を見る 

06兵庫県教員採用試験(数学:3番 円と直線の関係)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
円$c:x^2+y^2=1+m$と直線$l:y=-3x+m$が異なる2点$A,B$で交わる。
$m$は定数

(1)
$m$の値の範囲を求めよ

(2)
弦$AB$の長さの最大値とそのときの$m$の値を求めよ。
この動画を見る 

15岡山県教員採用試験(数学:6番 サイクロイドの長さ)

アイキャッチ画像
単元: #平面上の曲線#2次曲線#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
曲線$c$ $\begin{eqnarray}
\left\{
\begin{array}{l}
x=r(\theta-\sin\theta) \\
y-r(1-\cos\theta)
\end{array}
\right.
\end{eqnarray}$
の長さ$\ell$を求めよ.

$r\gt 0,0\leqq \theta 2\pi$とする.
この動画を見る 

16東京都教員採用試験(数学:1-5番 行列)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(5)
$\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a^3 & 2a \\
1-a & 1
\end{array}
\right)
\end{eqnarray}
, \quad a \in \mathbb{ R }$

$A^{-1}$が存在しないとき、aの値を求めよ。
この動画を見る 

練習問題24 兵庫県教採練習問題 14番 面積

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{14}$
$c:y=x\sin x \ (0\leqq x\leqq 2\pi)$
第4象限にある$C$上の点の接線$\ell$は原点を通る.
$c$と$\ell$で囲まれた面積$S$を求めよ.
この動画を見る 
PAGE TOP