福田の数学〜サッカーボール上のベクトルを求めよう〜慶應義塾大学2023年総合政策学部第5問〜空間の位置ベクトルと三角形の面積 - 質問解決D.B.(データベース)

福田の数学〜サッカーボール上のベクトルを求めよう〜慶應義塾大学2023年総合政策学部第5問〜空間の位置ベクトルと三角形の面積

問題文全文(内容文):
${\large\boxed{5}}$サッカーボールは12個の正五角形と20個の正六角形からなり、切頂二十面体と呼ばれる構造をしている。以下では、正五角形と正六角形の各辺の長さを1であるとし、右図のように頂点にアルファベットで名前を付ける。なお、正五角形の辺と対角線の長さの比は
$1:\frac{1+\sqrt5}{2}$である。

(1)$\overrightarrow{ OA_1 }$と$\overrightarrow{ OA_2 }$の内積は,
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\dfrac{\boxed{ア}+\boxed{イ}\sqrt{\boxed{ウ}}}{\boxed{エ}}$である.

2023慶應義塾大学総合政策学部過去問
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$サッカーボールは12個の正五角形と20個の正六角形からなり、切頂二十面体と呼ばれる構造をしている。以下では、正五角形と正六角形の各辺の長さを1であるとし、右図のように頂点にアルファベットで名前を付ける。なお、正五角形の辺と対角線の長さの比は
$1:\frac{1+\sqrt5}{2}$である。

(1)$\overrightarrow{ OA_1 }$と$\overrightarrow{ OA_2 }$の内積は,
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\dfrac{\boxed{ア}+\boxed{イ}\sqrt{\boxed{ウ}}}{\boxed{エ}}$である.

2023慶應義塾大学総合政策学部過去問
投稿日:2023.12.06

<関連動画>

福田の数学〜慶應義塾大学看護医療学部2025第3問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標空間内に

$3$点$A(-1,1,6),B(0,3,6),C(1,1,5)$をとる。

このとき、$\vert \overrightarrow{AB} \vert =\boxed{ス},\overrightarrow{AB}・\overrightarrow{AC}=\boxed{セ}$であり、

$\angle BAC$の大きさを$\theta$とすると、

$\sin\theta=\boxed{ソ}$である。

ただし、$0\lt \theta \lt \pi$とする。

また、三角形$ABC$の面積は$\boxed{タ}$である。

さらに、

$3$点$A,B,C$の定める平面$ABC$に原点$O$から

垂線$OH$を下ろすと、点$H$の座標は$\boxed{チ}$であり、

四面体$OABC$の体積は$\boxed{ツ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ$\sqrt{13}$, 5, 5である。
$\overrightarrow{OA}$・$\overrightarrow{OB}$=$\overrightarrow{OA}$・$\overrightarrow{OC}$=1, $\overrightarrow{OB}$・$\overrightarrow{OC}$=-11 とする。頂点Oから$\triangle$ABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数$s$, $t$を$\overrightarrow{OH}$=$\overrightarrow{OA}$+$s\overrightarrow{AB}$+$t\overrightarrow{AC}$ を満たすように定めるとき、$s$と$t$の値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第2問〜空間ベクトルと2直線から等距離にある点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $k$を正の実数とし、空間内に点O(0,0,0), A(4$k$, $-4k$, $-4\sqrt 2k$), B(7, 5, $-\sqrt 2$)をとる。点CはO, A, Bを含む平面上の点であり、OA=4BCで、四角形OACBはOAを底辺とする台形であるとする。
(1)$\cos\angle$AOB=$\boxed{\ \ ア\ \ }$である。台形OACBの面積を$k$を用いて表すと$\boxed{\ \ イ\ \ }$となる。
また、線分ACの長さを$k$を用いて表すと$\boxed{\ \ ウ\ \ }$となる。
(2)台形OACBが円に内接するとき、$k$=$\boxed{\ \ エ\ \ }$である。
(3)$k$=$\boxed{\ \ エ\ \ }$であるとし、直線OBと直線ACの交点をDとする。△OBPと△ACPの面積が等しい、という条件を満たす空間内の点P全体は、点Dを通る2つの平面上の点全体から点Dを除いたものとなる。これら2つの平面のうち、線分OAと交わらないものを$\alpha$とする。点Oから平面$\alpha$に下ろした垂線の長さは$\boxed{\ \ オ\ \ }$である。
この動画を見る 

【数C】ベクトル:直線と平面の交点

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
この動画を見る 

【数C】【空間ベクトル】(1) 2点A(5,-2,-3)、B(8,0,-4)を通る直線に垂線OHを下ろす。点Hの座標と線分OHの長さを求めよ。他1問

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 2点A(5,-2,-3)、B(8,0,-4)を通る直線に、原点Oから垂線OHを下ろす。このとき、点Hの座標と線分OHの長さを求めよ。
(2) 2点A(0.-2,-3)、B(8,4,7)を通る直線に、点P(3,-1,4)から垂線PHを下ろす。このとき、点Hの座標と線分PHの長さを求めよ
この動画を見る 
PAGE TOP