問題文全文(内容文):
京都大学(文系)2004年(第3問)
$△OAB$において、$a=OA、b=OB$とし、$\vert a\vert =3, \vert b\vert =5, cos\angle AOB=\dfrac{3}{5}$とする。このとき、$\angle AOB$の二等分線とBを中心とする半径$\sqrt{10}$の円との交点の、Oを原点とする位置ベクトルを、a, bを用いて表せ。
京都大学(文系)2004年(第3問)
$△OAB$において、$a=OA、b=OB$とし、$\vert a\vert =3, \vert b\vert =5, cos\angle AOB=\dfrac{3}{5}$とする。このとき、$\angle AOB$の二等分線とBを中心とする半径$\sqrt{10}$の円との交点の、Oを原点とする位置ベクトルを、a, bを用いて表せ。
チャプター:
0:00 オープニング
0:05 問題文
0:15 問題文の図示
0:23 角の二等分線上のベクトルを表す
0:39 半径も利用
1:06 大きさは2乗する
2:01 2次方程式を解く
3:00 名言
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
京都大学(文系)2004年(第3問)
$△OAB$において、$a=OA、b=OB$とし、$\vert a\vert =3, \vert b\vert =5, cos\angle AOB=\dfrac{3}{5}$とする。このとき、$\angle AOB$の二等分線とBを中心とする半径$\sqrt{10}$の円との交点の、Oを原点とする位置ベクトルを、a, bを用いて表せ。
京都大学(文系)2004年(第3問)
$△OAB$において、$a=OA、b=OB$とし、$\vert a\vert =3, \vert b\vert =5, cos\angle AOB=\dfrac{3}{5}$とする。このとき、$\angle AOB$の二等分線とBを中心とする半径$\sqrt{10}$の円との交点の、Oを原点とする位置ベクトルを、a, bを用いて表せ。
投稿日:2021.09.15